IDEAS home Printed from https://ideas.repec.org/p/sfu/sfudps/dp12-07.html
   My bibliography  Save this paper

Model Validation and Learning

Author

Abstract

This paper studies adaptive learning with multiple models. An agent operating in a self-referential environment is aware of potential model misspecification, and tries to detect it, in real-time, using an econometric specification test. If the current model passes the test, it is used to construct an optimal policy. If it fails the test, a new model is selected from a fixed set of models. As the rate of coefficient updating decreases, one model becomes dominant, and is used 'almost always'. Dominant models can be characterized using the tools of large deviations theory. The analysis is applied to Sargent's (1999) Phillips Curve model.

Suggested Citation

  • In-Koo Cho & Ken Kasa, 2012. "Model Validation and Learning," Discussion Papers dp12-07, Department of Economics, Simon Fraser University.
  • Handle: RePEc:sfu:sfudps:dp12-07
    as

    Download full text from publisher

    File URL: http://www.sfu.ca/repec-econ/sfu/sfudps/dp12-07.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. I. Gilboa & W. A. Postlewaite & D. Schmeidler, 2009. "Probability and Uncertainty in Economic Modeling," Voprosy Ekonomiki, NP Voprosy Ekonomiki, issue 10.
    2. Marcet, Albert & Sargent, Thomas J., 1989. "Convergence of least squares learning mechanisms in self-referential linear stochastic models," Journal of Economic Theory, Elsevier, vol. 48(2), pages 337-368, August.
    3. Frank Schorfheide, 2000. "Loss function-based evaluation of DSGE models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(6), pages 645-670.
    4. Sungbae An & Frank Schorfheide, 2007. "Bayesian Analysis of DSGE Models," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 113-172.
    5. Brock, William A. & Durlauf, Steven N. & West, Kenneth D., 2007. "Model uncertainty and policy evaluation: Some theory and empirics," Journal of Econometrics, Elsevier, vol. 136(2), pages 629-664, February.
    6. Kandori, Michihiro & Mailath, George J & Rob, Rafael, 1993. "Learning, Mutation, and Long Run Equilibria in Games," Econometrica, Econometric Society, vol. 61(1), pages 29-56, January.
    7. Timothy Cogley & Riccardo Colacito & Lars Peter Hansen & Thomas J. Sargent, 2008. "Robustness and U.S. Monetary Policy Experimentation," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 40(8), pages 1599-1623, December.
    8. Margaret Bray & David M. Kreps, 1987. "Rational Learning and Rational Expectations," Palgrave Macmillan Books, in: George R. Feiwel (ed.), Arrow and the Ascent of Modern Economic Theory, chapter 19, pages 597-625, Palgrave Macmillan.
    9. Christopher A. Sims, 1982. "Policy Analysis with Econometric Models," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 13(1), pages 107-164.
    10. Chu, Chia-Shang James & Stinchcombe, Maxwell & White, Halbert, 1996. "Monitoring Structural Change," Econometrica, Econometric Society, vol. 64(5), pages 1045-1065, September.
    11. Hansen M. H & Yu B., 2001. "Model Selection and the Principle of Minimum Description Length," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 746-774, June.
    12. Sin, Chor-Yiu & White, Halbert, 1996. "Information criteria for selecting possibly misspecified parametric models," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 207-225.
    13. Foster, Dean P. & Young, H. Peyton, 2003. "Learning, hypothesis testing, and Nash equilibrium," Games and Economic Behavior, Elsevier, vol. 45(1), pages 73-96, October.
    14. Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-333, March.
    15. McGough, Bruce, 2003. "Statistical Learning With Time-Varying Parameters," Macroeconomic Dynamics, Cambridge University Press, vol. 7(1), pages 119-139, February.
    16. Lucas, Robert Jr, 1976. "Econometric policy evaluation: A critique," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 1(1), pages 19-46, January.
    17. Bullard, James, 1992. "Time-varying parameters and nonconvergence to rational expectations under least squares learning," Economics Letters, Elsevier, vol. 40(2), pages 159-166, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Yang & House, Lisa A. & Gao, Zhifeng, 2022. "How do consumers respond to labels for crispr (gene-editing)?," Food Policy, Elsevier, vol. 112(C).
    2. Hollmayr, Josef & Matthes, Christian, 2015. "Learning about fiscal policy and the effects of policy uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 59(C), pages 142-162.
    3. Norman, Thomas W.L., 2015. "Learning, hypothesis testing, and rational-expectations equilibrium," Games and Economic Behavior, Elsevier, vol. 90(C), pages 93-105.
    4. Kolyuzhnov, Dmitri & Bogomolova, Anna & Slobodyan, Sergey, 2014. "Escape dynamics: A continuous-time approximation," Journal of Economic Dynamics and Control, Elsevier, vol. 38(C), pages 161-183.
    5. Milani, Fabio, 2014. "Learning and time-varying macroeconomic volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 47(C), pages 94-114.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. In-Koo Cho & Kenneth Kasa, 2015. "Learning and Model Validation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 82(1), pages 45-82.
    2. In-Koo Cho & Kenneth Kasa, 2017. "Gresham's Law of Model Averaging," American Economic Review, American Economic Association, vol. 107(11), pages 3589-3616, November.
    3. Marco Del Negro & Frank Schorfheide, 2009. "Monetary Policy Analysis with Potentially Misspecified Models," American Economic Review, American Economic Association, vol. 99(4), pages 1415-1450, September.
    4. Norman, Thomas W.L., 2015. "Learning, hypothesis testing, and rational-expectations equilibrium," Games and Economic Behavior, Elsevier, vol. 90(C), pages 93-105.
    5. Adnan Haider Bukhari & Safdar Ullah Khan, 2008. "A Small Open Economy DSGE Model for Pakistan," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 47(4), pages 963-1008.
    6. Carlo A. Favero, 2007. "Model Evaluation in Macroeconometrics: from early empirical macroeconomic models to DSGE models," Working Papers 327, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    7. Geweke, J. & Joel Horowitz & Pesaran, M.H., 2006. "Econometrics: A Bird’s Eye View," Cambridge Working Papers in Economics 0655, Faculty of Economics, University of Cambridge.
    8. Frank Schorfheide, 2005. "Learning and Monetary Policy Shifts," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 8(2), pages 392-419, April.
    9. Cogley, Timothy & De Paoli, Bianca & Matthes, Christian & Nikolov, Kalin & Yates, Tony, 2011. "A Bayesian approach to optimal monetary policy with parameter and model uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 35(12), pages 2186-2212.
    10. Paccagnini, Alessia, 2017. "Dealing with Misspecification in DSGE Models: A Survey," MPRA Paper 82914, University Library of Munich, Germany.
    11. Fabio Milani, 2009. "Adaptive Learning and Macroeconomic Inertia in the Euro Area," Journal of Common Market Studies, Wiley Blackwell, vol. 47(3), pages 579-599, June.
    12. Özer Karagedikli & Troy Matheson & Christie Smith & Shaun P. Vahey, 2010. "RBCs AND DSGEs: THE COMPUTATIONAL APPROACH TO BUSINESS CYCLE THEORY AND EVIDENCE," Journal of Economic Surveys, Wiley Blackwell, vol. 24(1), pages 113-136, February.
    13. Bullard, James & Suda, Jacek, 2016. "The stability of macroeconomic systems with Bayesian learners," Journal of Economic Dynamics and Control, Elsevier, vol. 62(C), pages 1-16.
    14. Eilev S. Jansen, 2004. "Modelling inflation in the Euro Area," Working Paper 2004/10, Norges Bank.
    15. Luca Benati, 2008. "Investigating Inflation Persistence Across Monetary Regimes," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 123(3), pages 1005-1060.
    16. Consolo, Agostino & Favero, Carlo A. & Paccagnini, Alessia, 2009. "On the statistical identification of DSGE models," Journal of Econometrics, Elsevier, vol. 150(1), pages 99-115, May.
    17. Jesús Fernández-Villaverde & Juan F. Rubio-Ramírez, 2007. "Estimating Macroeconomic Models: A Likelihood Approach," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 74(4), pages 1059-1087.
    18. Yongsung Chang & Sun-Bin Kim & Frank Schorfheide, 2010. "Labor-Market Heterogeneity, Aggregation, and the Lucas Critique," RCER Working Papers 556, University of Rochester - Center for Economic Research (RCER).
    19. Carlo A. Favero, 2009. "The Econometrics of Monetary Policy: An Overview," Palgrave Macmillan Books, in: Terence C. Mills & Kerry Patterson (ed.), Palgrave Handbook of Econometrics, chapter 16, pages 821-850, Palgrave Macmillan.
    20. Berardi, Michele & Galimberti, Jaqueson K., 2013. "A note on exact correspondences between adaptive learning algorithms and the Kalman filter," Economics Letters, Elsevier, vol. 118(1), pages 139-142.

    More about this item

    Keywords

    Learning; Model validation;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • E59 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Other

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sfu:sfudps:dp12-07. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Working Paper Coordinator (email available below). General contact details of provider: https://edirc.repec.org/data/desfuca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.