IDEAS home Printed from https://ideas.repec.org/p/sef/csefwp/393.html
   My bibliography  Save this paper

MinSup Problems with Quasi-equilibrium Constraints and Viscosity Solutions

Author

Listed:

Abstract

MinSup problems with constraints described by quasi-equilibrium problems are considered in Banach spaces. The solutions set of such problems may be empty even in very good situations, so the aim of this paper is twofold. First, we determine appropriate regularizations which allow to asymptotically reach the value of the original problem. Then, among these regularizations we identify those which allow to bypass the lack of exact solutions to these problems by a suitable concept of viscosity solution whose existence is then proved under reasonable assumptions.

Suggested Citation

  • M. Beatrice Lignola & Jacqueline Morgan, 2015. "MinSup Problems with Quasi-equilibrium Constraints and Viscosity Solutions," CSEF Working Papers 393, Centre for Studies in Economics and Finance (CSEF), University of Naples, Italy.
  • Handle: RePEc:sef:csefwp:393
    as

    Download full text from publisher

    File URL: http://www.csef.it/WP/wp393.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. M. Beatrice Lignola & Jacqueline Morgan, 2014. "Viscosity Solutions for Bilevel Problems with Nash Equilibrium Constraints," CSEF Working Papers 367, Centre for Studies in Economics and Finance (CSEF), University of Naples, Italy, revised 02 Oct 2014.
    2. M. Beatrice Lignola & Jacqueline Morgan, 2012. "Approximating Security Values of MinSup Problems with Quasi-variational Inequality Constraints," CSEF Working Papers 321, Centre for Studies in Economics and Finance (CSEF), University of Naples, Italy, revised 09 Oct 2014.
    3. L. C. Ceng & N. Hadjisavvas & S. Schaible & J. C. Yao, 2008. "Well-Posedness for Mixed Quasivariational-Like Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 139(1), pages 109-125, October.
    4. M. B. Lignola & J. Morgan, 2007. "On Convergence Results for Weak Efficiency in Vector Optimization Problems with Equilibrium Constraints," Journal of Optimization Theory and Applications, Springer, vol. 133(1), pages 117-121, April.
    5. M. Lignola & Jacqueline Morgan, 2012. "Approximate values for mathematical programs with variational inequality constraints," Computational Optimization and Applications, Springer, vol. 53(2), pages 485-503, October.
    6. Jacqueline Morgan & Roberto Raucci, 2003. "Lower semicontinuity for approximate social Nash equilibria," International Journal of Game Theory, Springer;Game Theory Society, vol. 31(4), pages 499-509, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Beatrice Lignola & Jacqueline Morgan, 2017. "Inner Regularizations and Viscosity Solutions for Pessimistic Bilevel Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 173(1), pages 183-202, April.
    2. Phan Khanh & Vo Long, 2014. "Invariant-point theorems and existence of solutions to optimization-related problems," Journal of Global Optimization, Springer, vol. 58(3), pages 545-564, March.
    3. Francesco Caruso & Maria Carmela Ceparano & Jacqueline Morgan, 2019. "Subgame Perfect Nash Equilibrium: A Learning Approach via Costs to Move," Dynamic Games and Applications, Springer, vol. 9(2), pages 416-432, June.
    4. L. Q. Anh & P. Q. Khanh & D. T. M. Van, 2012. "Well-Posedness Under Relaxed Semicontinuity for Bilevel Equilibrium and Optimization Problems with Equilibrium Constraints," Journal of Optimization Theory and Applications, Springer, vol. 153(1), pages 42-59, April.
    5. Jia-Wei Chen & Zhongping Wan & Yeol Cho, 2013. "Levitin–Polyak well-posedness by perturbations for systems of set-valued vector quasi-equilibrium problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(1), pages 33-64, February.
    6. Bo Zeng, 2020. "A Practical Scheme to Compute the Pessimistic Bilevel Optimization Problem," INFORMS Journal on Computing, INFORMS, vol. 32(4), pages 1128-1142, October.
    7. Yi-bin Xiao & Nan-jing Huang, 2011. "Well-posedness for a Class of Variational–Hemivariational Inequalities with Perturbations," Journal of Optimization Theory and Applications, Springer, vol. 151(1), pages 33-51, October.
    8. Francesco Caruso & M. Beatrice Lignola & Jacqueline Morgan, 2020. "Regularization and Approximation Methods in Stackelberg Games and Bilevel Optimization," Springer Optimization and Its Applications, in: Stephan Dempe & Alain Zemkoho (ed.), Bilevel Optimization, chapter 0, pages 77-138, Springer.
    9. Savin Treanţă, 2022. "Well-Posedness Results of Certain Variational Inequalities," Mathematics, MDPI, vol. 10(20), pages 1-15, October.
    10. M. Beatrice Lignola & Jacqueline Morgan, 2012. "Approximating Security Values of MinSup Problems with Quasi-variational Inequality Constraints," CSEF Working Papers 321, Centre for Studies in Economics and Finance (CSEF), University of Naples, Italy, revised 09 Oct 2014.
    11. M. Beatrice Lignola & Jacqueline Morgan, 2013. "Asymptotic Behavior of Regularized OptimizationProblems with Quasi-variational Inequality Constraints," CSEF Working Papers 350, Centre for Studies in Economics and Finance (CSEF), University of Naples, Italy.
    12. M. Darabi & J. Zafarani, 2015. "Tykhonov Well-Posedness for Quasi-Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 165(2), pages 458-479, May.
    13. J. W. Chen & Y. J. Cho & S. A. Khan & Z. Wan & C. F. Wen, 2015. "The Levitin-Polyak well-posedness by perturbations for systems of general variational inclusion and disclusion problems," Indian Journal of Pure and Applied Mathematics, Springer, vol. 46(6), pages 901-920, December.
    14. Savin Treanţă, 2021. "On Well-Posedness of Some Constrained Variational Problems," Mathematics, MDPI, vol. 9(19), pages 1-12, October.
    15. M. Lignola & Jacqueline Morgan, 2012. "Approximate values for mathematical programs with variational inequality constraints," Computational Optimization and Applications, Springer, vol. 53(2), pages 485-503, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sef:csefwp:393. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dr. Maria Carannante (email available below). General contact details of provider: https://edirc.repec.org/data/cssalit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.