IDEAS home Printed from https://ideas.repec.org/p/sce/scecf5/5.html
   My bibliography  Save this paper

The Use of Downside Risk Measures in Portfolio Construction and Evaluation

Author

Listed:
  • Dr. Brian J. Jacobsen

Abstract

One of the challenges of using downside risk measures as an alternative constructor of portfolios and diagnostic devise is in their computational intensity. This paper outlines how to use downside risk measures to construct efficient portfolios and to evaluate portfolio performance in light of investor loss aversion

Suggested Citation

  • Dr. Brian J. Jacobsen, 2005. "The Use of Downside Risk Measures in Portfolio Construction and Evaluation," Computing in Economics and Finance 2005 5, Society for Computational Economics.
  • Handle: RePEc:sce:scecf5:5
    as

    Download full text from publisher

    File URL: http://repec.org/sce2005/up.5184.1102515146.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. B. B. Mandelbrot, 2001. "Scaling in financial prices: I. Tails and dependence," Quantitative Finance, Taylor & Francis Journals, vol. 1(1), pages 113-123.
    2. Benoit Mandelbrot & Adlai Fisher & Laurent Calvet, 1997. "A Multifractal Model of Asset Returns," Cowles Foundation Discussion Papers 1164, Cowles Foundation for Research in Economics, Yale University.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wilhelm Berghorn & Sascha Otto, 2017. "Mandelbrot Market-Model and Momentum," International Journal of Financial Research, International Journal of Financial Research, Sciedu Press, vol. 8(3), pages 1-26, July.
    2. Arun Kumar & Palaniappan Vellaisamy, 2012. "Fractional Normal Inverse Gaussian Process," Methodology and Computing in Applied Probability, Springer, vol. 14(2), pages 263-283, June.
    3. Benoit B. Mandelbrot, 2005. "Parallel cartoons of fractal models of finance," Annals of Finance, Springer, vol. 1(2), pages 179-192, October.
    4. M. A. H. Dempster, 2011. "Benoit B. Mandelbrot (1924-2010): a father of Quantitative Finance," Quantitative Finance, Taylor & Francis Journals, vol. 11(2), pages 155-156.
    5. Chris Heyde, 2009. "Scaling issues for risky asset modelling," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 69(3), pages 593-603, July.
    6. Segnon, Mawuli & Lux, Thomas, 2013. "Multifractal models in finance: Their origin, properties, and applications," Kiel Working Papers 1860, Kiel Institute for the World Economy (IfW Kiel).
    7. Sutthisit Jamdee & Cornelis A. Los, 2005. "Multifractal Modeling of the US Treasury Term Structure and Fed Funds Rate," Finance 0502021, University Library of Munich, Germany.
    8. Timothy DeLise, 2021. "Neural Options Pricing," Papers 2105.13320, arXiv.org.
    9. Victor Olkhov, 2023. "Market-Based Probability of Stock Returns," Papers 2302.07935, arXiv.org, revised Dec 2024.
    10. Thomas Theobald, 2015. "Agent-based risk management – a regulatory approach to financial markets," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 42(5), pages 780-820, October.
    11. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2001. "Microscopic Models of Financial Markets," Papers cond-mat/0110354, arXiv.org.
    12. Paul Eitelman & Justin Vitanza, 2008. "A non-random walk revisited: short- and long-term memory in asset prices," International Finance Discussion Papers 956, Board of Governors of the Federal Reserve System (U.S.).
    13. Mulligan, Robert F., 2004. "Fractal analysis of highly volatile markets: an application to technology equities," The Quarterly Review of Economics and Finance, Elsevier, vol. 44(1), pages 155-179, February.
    14. Kyaw, NyoNyo A. & Los, Cornelis A. & Zong, Sijing, 2006. "Persistence characteristics of Latin American financial markets," Journal of Multinational Financial Management, Elsevier, vol. 16(3), pages 269-290, July.
    15. Selçuk, Faruk & Gençay, Ramazan, 2006. "Intraday dynamics of stock market returns and volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 375-387.
    16. TEYSSIERE, Gilles, 2003. "Interaction models for common long-range dependence in asset price volatilities," LIDAM Discussion Papers CORE 2003026, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    17. Aslam, Faheem & Aziz, Saqib & Nguyen, Duc Khuong & Mughal, Khurrum S. & Khan, Maaz, 2020. "On the efficiency of foreign exchange markets in times of the COVID-19 pandemic," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    18. Lux, Thomas & Morales-Arias, Leonardo & Sattarhoff, Cristina, 2011. "A Markov-switching multifractal approach to forecasting realized volatility," Kiel Working Papers 1737, Kiel Institute for the World Economy (IfW Kiel).
    19. Cornelis A. Los & Rossitsa M. Yalamova, 2004. "Multi-Fractal Spectral Analysis of the 1987 Stock Market Crash," Finance 0409050, University Library of Munich, Germany.
    20. Decrouez, Geoffrey & Hambly, Ben & Jones, Owen Dafydd, 2015. "The Hausdorff spectrum of a class of multifractal processes," Stochastic Processes and their Applications, Elsevier, vol. 125(4), pages 1541-1568.

    More about this item

    Keywords

    downside risk; portfolios; performance measure;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecf5:5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/sceeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.