IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v14y2012i2d10.1007_s11009-010-9201-z.html
   My bibliography  Save this article

Fractional Normal Inverse Gaussian Process

Author

Listed:
  • Arun Kumar

    (Indian Institute of Technology Bombay)

  • Palaniappan Vellaisamy

    (Indian Institute of Technology Bombay)

Abstract

Normal inverse Gaussian (NIG) process was introduced by Barndorff-Nielsen (Scand J Statist 24:1–13, 1997) by subordinating Brownian motion with drift to an inverse Gaussian process. Increments of NIG process are independent and are stationary. In this paper, we introduce dependence between the increments of NIG process, by subordinating fractional Brownian motion to an inverse Gaussian process and call it fractional normal inverse Gaussian (FNIG) process. The basic properties of this process are discussed. Its marginal distributions are scale mixtures of normal laws, infinitely divisible for the Hurst parameter 1/2 ≤ H

Suggested Citation

  • Arun Kumar & Palaniappan Vellaisamy, 2012. "Fractional Normal Inverse Gaussian Process," Methodology and Computing in Applied Probability, Springer, vol. 14(2), pages 263-283, June.
  • Handle: RePEc:spr:metcap:v:14:y:2012:i:2:d:10.1007_s11009-010-9201-z
    DOI: 10.1007/s11009-010-9201-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-010-9201-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-010-9201-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dilip B. Madan & Peter P. Carr & Eric C. Chang, 1998. "The Variance Gamma Process and Option Pricing," Review of Finance, European Finance Association, vol. 2(1), pages 79-105.
    2. Benoit Mandelbrot & Howard M. Taylor, 1967. "On the Distribution of Stock Price Differences," Operations Research, INFORMS, vol. 15(6), pages 1057-1062, December.
    3. B. B. Mandelbrot, 2001. "Scaling in financial prices: I. Tails and dependence," Quantitative Finance, Taylor & Francis Journals, vol. 1(1), pages 113-123.
    4. Benoit Mandelbrot & Adlai Fisher & Laurent Calvet, 1997. "A Multifractal Model of Asset Returns," Cowles Foundation Discussion Papers 1164, Cowles Foundation for Research in Economics, Yale University.
    5. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-155, January.
    6. Sato, Ken-iti, 2001. "Subordination and self-decomposability," Statistics & Probability Letters, Elsevier, vol. 54(3), pages 317-324, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sung Ik Kim, 2022. "ARMA–GARCH model with fractional generalized hyperbolic innovations," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-25, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benoit B. Mandelbrot, 2005. "Parallel cartoons of fractal models of finance," Annals of Finance, Springer, vol. 1(2), pages 179-192, October.
    2. Aldrich, Eric M. & Heckenbach, Indra & Laughlin, Gregory, 2016. "A compound duration model for high-frequency asset returns," Journal of Empirical Finance, Elsevier, vol. 39(PA), pages 105-128.
    3. Robert J. Elliott & Carlton-James U. Osakwe, 2006. "Option Pricing for Pure Jump Processes with Markov Switching Compensators," Finance and Stochastics, Springer, vol. 10(2), pages 250-275, April.
    4. Halbleib, Roxana & Dimitriadis, Timo, 2019. "How informative is high-frequency data for tail risk estimation and forecasting? An intrinsic time perspectice," VfS Annual Conference 2019 (Leipzig): 30 Years after the Fall of the Berlin Wall - Democracy and Market Economy 203669, Verein für Socialpolitik / German Economic Association.
    5. Eric M. Aldrich & Indra Heckenbach & Gregory Laughlin, 2014. "A Compound Multifractal Model for High-Frequency Asset Returns," BYU Macroeconomics and Computational Laboratory Working Paper Series 2014-05, Brigham Young University, Department of Economics, BYU Macroeconomics and Computational Laboratory.
    6. McCulloch, James, 2012. "Fractal market time," Journal of Empirical Finance, Elsevier, vol. 19(5), pages 686-701.
    7. Segnon, Mawuli & Lux, Thomas, 2013. "Multifractal models in finance: Their origin, properties, and applications," Kiel Working Papers 1860, Kiel Institute for the World Economy (IfW Kiel).
    8. Elisa Luciano & Wim Schoutens, 2006. "A multivariate jump-driven financial asset model," Quantitative Finance, Taylor & Francis Journals, vol. 6(5), pages 385-402.
    9. Jing Li & Lingfei Li & Rafael Mendoza-Arriaga, 2016. "Additive subordination and its applications in finance," Finance and Stochastics, Springer, vol. 20(3), pages 589-634, July.
    10. Tomáš Tichý, 2010. "Posouzení odhadu měnového rizika portfolia pomocí Lévyho modelů [Examination of Portfolio Currency Risk Estimation by Means of Lévy Models]," Politická ekonomie, Prague University of Economics and Business, vol. 2010(4), pages 504-521.
    11. Buchmann, Boris & Kaehler, Benjamin & Maller, Ross & Szimayer, Alexander, 2017. "Multivariate subordination using generalised Gamma convolutions with applications to Variance Gamma processes and option pricing," Stochastic Processes and their Applications, Elsevier, vol. 127(7), pages 2208-2242.
    12. Yeap, Claudia & Kwok, Simon S. & Choy, S. T. Boris, 2016. "A Flexible Generalised Hyperbolic Option Pricing Model and its Special Cases," Working Papers 2016-14, University of Sydney, School of Economics.
    13. Scalas, Enrico & Kaizoji, Taisei & Kirchler, Michael & Huber, Jürgen & Tedeschi, Alessandra, 2006. "Waiting times between orders and trades in double-auction markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 463-471.
    14. Martijn Pistorius & Johannes Stolte, 2012. "Fast computation of vanilla prices in time-changed models and implied volatilities using rational approximations," Papers 1203.6899, arXiv.org.
    15. J. Doyne Farmer & Laszlo Gillemot & Fabrizio Lillo & Szabolcs Mike & Anindya Sen, 2004. "What really causes large price changes?," Quantitative Finance, Taylor & Francis Journals, vol. 4(4), pages 383-397.
    16. Calvet, Laurent E. & Fisher, Adlai J., 2008. "Multifrequency jump-diffusions: An equilibrium approach," Journal of Mathematical Economics, Elsevier, vol. 44(2), pages 207-226, January.
    17. Saswat Patra & Malay Bhattacharyya, 2021. "Does volume really matter? A risk management perspective using cross‐country evidence," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 118-135, January.
    18. Lorenzo Torricelli, 2012. "Valuation of asset and volatility derivatives using decoupled time-changed L\'evy processes," Papers 1210.5479, arXiv.org, revised Jan 2015.
    19. Chen, Fei & Diebold, Francis X. & Schorfheide, Frank, 2013. "A Markov-switching multifractal inter-trade duration model, with application to US equities," Journal of Econometrics, Elsevier, vol. 177(2), pages 320-342.
    20. Sandrine Jacob Leal & Mauro Napoletano & Andrea Roventini & Giorgio Fagiolo, 2016. "Rock around the clock: An agent-based model of low- and high-frequency trading," Journal of Evolutionary Economics, Springer, vol. 26(1), pages 49-76, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:14:y:2012:i:2:d:10.1007_s11009-010-9201-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.