IDEAS home Printed from https://ideas.repec.org/p/sce/scecf5/355.html
   My bibliography  Save this paper

Operational risk management and new computational needs in banks

Author

Listed:
  • Duc PHAM-HI

    (Systemes Informations & Finance Ecole Centrale Electronique)

Abstract

Basel II banking regulation introduces new needs for computational schemes. They involve both optimal stochastic control, and large scale simulations of decision processes of preventing low-frequency high loss-impact events. This paper will first state the problem and present its parameters. It then spells out the equations that represent a rational risk management behavior and link together the variables: Levy processes are used to model operational risk losses, where calibration by historical loss databases is possible ; where it is not the case, qualitative variables such as quality of business environment and internal controls can provide both costs-side and profits-side impacts. Among other control variables are business growth rate, and efficiency of risk mitigation. The economic value of a policy is maximized by resolving the resulting Hamilton-Jacobi-Bellman type equation. Computational complexity arises from embedded interactions between 3 levels: * Programming global optimal dynamic expenditures budget in Basel II context, * Arbitraging between the cost of risk-reduction policies (as measured by organizational qualitative scorecards and insurance buying) and the impact of incurred losses themselves. This implies modeling the efficiency of the process through which forward-looking measures of threats minimization, can actually reduce stochastic losses, * And optimal allocation according to profitability across subsidiaries and business lines. The paper next reviews the different types of approaches that can be envisaged in deriving a sound budgetary policy solution for operational risk management, based on this HJB equation. It is argued that while this complex, high dimensional problem can be resolved by taking some usual simplifications (Galerkin approach, imposing Merton form solutions, viscosity approach, ad hoc utility functions that provide closed form solutions, etc.) , the main interest of this model lies in exploring the scenarios in an adaptive learning framework ( MDP, partially observed MDP, Q-learning, neuro-dynamic programming, greedy algorithm, etc.). This makes more sense from a management point of view, and solutions are more easily communicated to, and accepted by, the operational level staff in banks through the explicit scenarios that can be derived. This kind of approach combines different computational techniques such as POMDP, stochastic control theory and learning algorithms under uncertainty and incomplete information. The paper concludes by presenting the benefits of such a consistent computational approach to managing budgets, as opposed to a policy of operational risk management made up from disconnected expenditures. Such consistency satisfies the qualifying criteria for banks to apply for the AMA (Advanced Measurement Approach) that will allow large economies of regulatory capital charge under Basel II Accord.

Suggested Citation

  • Duc PHAM-HI, 2005. "Operational risk management and new computational needs in banks," Computing in Economics and Finance 2005 355, Society for Computational Economics.
  • Handle: RePEc:sce:scecf5:355
    as

    Download full text from publisher

    File URL: http://repec.org/sce2005/up.12491.1107198083.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Framstad, Nils Chr. & Oksendal, Bernt & Sulem, Agnes, 2001. "Optimal consumption and portfolio in a jump diffusion market with proportional transaction costs," Journal of Mathematical Economics, Elsevier, vol. 35(2), pages 233-257, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Duc Pham-Hi, 2006. "Modèles de mesure du risque opérationnel : quelle convergence dans les banques ?," Revue d'Économie Financière, Programme National Persée, vol. 84(3), pages 25-45.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Felix J. Lopez-Iturriaga & Domingo Javier Santana-Martin, 2015. "Do Shareholder Coalitions Modify Dominant Owner's Control? The Impact On Dividend Policy," HSE Working papers WP BRP 41/FE/2015, National Research University Higher School of Economics.
    2. Neha Deopa & Daniele Rinaldo, 2019. "Firm Decisions under Jump-Diffusive Dynamics," IHEID Working Papers 04-2019, Economics Section, The Graduate Institute of International Studies, revised 21 Mar 2019.
    3. Nikolay A. Andreev, 2014. "On Linearity Of Transaction Costs In Order Driven Market," HSE Working papers WP BRP 38/FE/2014, National Research University Higher School of Economics.
    4. Jouini, Elyes, 2001. "Arbitrage and control problems in finance: A presentation," Journal of Mathematical Economics, Elsevier, vol. 35(2), pages 167-183, April.
    5. Framstad, Nils Chr., 2014. "The Effect of Small Intervention Costs on the Optimal Extraction of Dividends and Renewable Resources in a Jump-Diffusion Model," Memorandum 25/2014, Oslo University, Department of Economics.
    6. Valeri Zakamouline, 2004. "A Unified Approach to Portfolio Optimization with Linear Transaction Costs," GE, Growth, Math methods 0404003, University Library of Munich, Germany, revised 28 Apr 2004.
    7. Johannes Temme, 2012. "Power utility maximization in exponential Lévy models: convergence of discrete-time to continuous-time maximizers," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 76(1), pages 21-41, August.
    8. Ken Sennewald & Klaus Wälde, 2006. "“Itô's Lemma” and the Bellman Equation for Poisson Processes: An Applied View," Journal of Economics, Springer, vol. 89(1), pages 1-36, October.
    9. Nikolay Andreev, 2019. "Robust Portfolio Optimization in an Illiquid Market in Discrete-Time," Mathematics, MDPI, vol. 7(12), pages 1-16, November.
    10. Le Courtois, Olivier & Menoncin, Francesco, 2015. "Portfolio optimisation with jumps: Illustration with a pension accumulation scheme," Journal of Banking & Finance, Elsevier, vol. 60(C), pages 127-137.
    11. Philip A. Ernst & L. C. G. Rogers, 2020. "The Value of Insight," Mathematics of Operations Research, INFORMS, vol. 45(4), pages 1193-1209, November.
    12. Dai, Min & Wang, Hefei & Yang, Zhou, 2012. "Leverage management in a bull–bear switching market," Journal of Economic Dynamics and Control, Elsevier, vol. 36(10), pages 1585-1599.
    13. Thai Nguyen, 2016. "Optimal investment and consumption with downside risk constraint in jump-diffusion models," Papers 1604.05584, arXiv.org.
    14. Sennewald, Ken & Wälde, Klaus, 2005. ""Itô's Lemma" and the Bellman equation: An applied view," Dresden Discussion Paper Series in Economics 04/05, Technische Universität Dresden, Faculty of Business and Economics, Department of Economics.
    15. Valeri Zakamouline, 2005. "A unified approach to portfolio optimization with linear transaction costs," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 62(2), pages 319-343, November.
    16. Sennewald, Ken, 2005. "Controlled Stochastic Differential Equations under Poisson Uncertainty and with Unbounded Utility," Dresden Discussion Paper Series in Economics 03/05, Technische Universität Dresden, Faculty of Business and Economics, Department of Economics.
    17. Baccarin Stefano, 2024. "CRRA Utility Maximization Over a Finite Horizon in an Exponential Levy Model with Finite Activity," Working papers 092, Department of Economics, Social Studies, Applied Mathematics and Statistics (Dipartimento di Scienze Economico-Sociali e Matematico-Statistiche), University of Torino.
    18. Akira Yamazaki, 2017. "Equilibrium Equity Price With Optimal Dividend Policy," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(02), pages 1-28, March.
    19. Dimitri Vallière & Yuri Kabanov & Emmanuel Lépinette, 2016. "Consumption-investment problem with transaction costs for Lévy-driven price processes," Finance and Stochastics, Springer, vol. 20(3), pages 705-740, July.
    20. Sennewald, Ken, 2007. "Controlled stochastic differential equations under Poisson uncertainty and with unbounded utility," Journal of Economic Dynamics and Control, Elsevier, vol. 31(4), pages 1106-1131, April.

    More about this item

    Keywords

    REGULAR - Operational risk management; HJB equation; Levy processes; budget optimization; capital allocation;
    All these keywords.

    JEL classification:

    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecf5:355. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/sceeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.