IDEAS home Printed from https://ideas.repec.org/p/sce/scecf0/64.html
   My bibliography  Save this paper

Fast Nonlinear Deterministic Forecasting Of Segmented Stock Indices Using Pattern Matching And Embedding Techniques

Author

Listed:
  • Georgios N. Banavas

    (University of Plymouth -Centre for Neural & Adaptive Systems)

  • Sue Denham

    (University of Plymouth)

  • Michael J. Denham

    (University of Plymouth)

Abstract

We perform out-of-sample predictions on a set of stock indices represented in a piecewise linear manner. An automated segmentation algorithm converges to an optimum segmented time series representation, which achieves considerable data compression and allows variable sampling rate of the time series depending on different segments having different length. Then, we propose a practical method to determine the minimum embedding dimension from the segmented time series. The novelty of this approach is that it is applied on segmented representations and that it returns the minimum embedding dimension measured in number of segments. It also has the following advantages: (1) does not contain subjective parameters; (2) works with any number of segments; (3) can detect deterministic time series; (4) is computationally efficient. We use the minimum embedding dimension as an indicator of the length of patterns that can be retrieved from the time series own past using our pattern matching technique. This technique enables the matching of historical patterns of similar shape which occur in different time scales. To define an appropriate similarity measure, we introduce the notation of Multiple Feature Sets (MFS) which employ Dynamic Time Warping (DTW) and first derivative and temporal features. An additional advantage of the system we propose is that the segmented representation scheme and the prediction model are both data driven and that the predictions are made using information only from the time-series own past without any a priori knowledge being injected into the model. We demonstrate that this approach may offer a useful decision support tool for stock market trading.

Suggested Citation

  • Georgios N. Banavas & Sue Denham & Michael J. Denham, 2000. "Fast Nonlinear Deterministic Forecasting Of Segmented Stock Indices Using Pattern Matching And Embedding Techniques," Computing in Economics and Finance 2000 64, Society for Computational Economics.
  • Handle: RePEc:sce:scecf0:64
    as

    Download full text from publisher

    File URL: http://fmwww.bc.edu/cef00/papers/paper64.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cao, Liangyue & Soofi, Abdol S., 1999. "Nonlinear deterministic forecasting of daily dollar exchange rates," International Journal of Forecasting, Elsevier, vol. 15(4), pages 421-430, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Funke & Marc Gronwald, 2008. "The Undisclosed Renminbi Basket: Are the Markets Telling Us Something about Where the Renminbi–US Dollar Exchange Rate is Going?," The World Economy, Wiley Blackwell, vol. 31(12), pages 1581-1598, December.
    2. Kyrtsou, Catherine & Terraza, Michel, 2002. "Stochastic chaos or ARCH effects in stock series?: A comparative study," International Review of Financial Analysis, Elsevier, vol. 11(4), pages 407-431.
    3. Strozzi, Fernanda & Zaldívar, José-Manuel & Zbilut, Joseph P., 2007. "Recurrence quantification analysis and state space divergence reconstruction for financial time series analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 376(C), pages 487-499.
    4. Bajo-Rubio, Oscar & Sosvilla-Rivero, Simon & Fernandez-Rodriguez, Fernando, 2001. "Asymmetry in the EMS: New evidence based on non-linear forecasts," European Economic Review, Elsevier, vol. 45(3), pages 451-473, March.
    5. Oscar Bajo-Rubio & Simón Sosvilla-Rivero & Fernando Fernández-Rodríguez, "undated". "Non-Linear Forecasting Methods: Some Applications to the Analysis of Financial Series," Working Papers 2002-01, FEDEA.
    6. Chun-Teck Lye & Tze-Haw Chan & Chee-Wooi Hooy, 2012. "Nonlinear Analysis Of Chinese And Malaysian Exchange Rates Predictability With Monetary Fundamentals," Journal of Global Business and Economics, Global Research Agency, vol. 5(1), pages 38-49, July.
    7. A. C. -L. Chian & E. L. Rempel & C. Rogers, 2007. "Crisis-induced intermittency in non-linear economic cycles," Applied Economics Letters, Taylor & Francis Journals, vol. 14(3), pages 211-218.
    8. repec:zbw:bofitp:2007_020 is not listed on IDEAS
    9. Bordignon, Silvano & Lisi, Francesco, 2001. "Predictive accuracy for chaotic economic models," Economics Letters, Elsevier, vol. 70(1), pages 51-58, January.
    10. Kück, Mirko & Freitag, Michael, 2021. "Forecasting of customer demands for production planning by local k-nearest neighbor models," International Journal of Production Economics, Elsevier, vol. 231(C).
    11. Marcos Álvarez-Díaz & Rangan Gupta, 2015. "Forecasting the US CPI: Does Nonlinearity Matter?," Working Papers 201512, University of Pretoria, Department of Economics.
    12. Fernando Fernández-Rodríguez & Simón Sosvilla-Rivero & Julián Andrada-Félix, "undated". "Nearest-Neighbour Predictions in Foreign Exchange Markets," Working Papers 2002-05, FEDEA.
    13. Olmedo,E. & Velasco, F. & Valderas, J.M., 2007. "Caracterización no lineal y predicción no paramétrica en el IBEX35/Nonlinear Characterization and Predictions of IBEX 35," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 25, pages 815-842, Diciembre.
    14. Belaire-Franch, Jorge, 2004. "Testing for non-linearity in an artificial financial market: a recurrence quantification approach," Journal of Economic Behavior & Organization, Elsevier, vol. 54(4), pages 483-494, August.
    15. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
    16. Strozzi, Fernanda & Comenges, José-Manuel Zaldívar, 2006. "Towards a non-linear trading strategy for financial time series," Chaos, Solitons & Fractals, Elsevier, vol. 28(3), pages 601-615.
    17. Muruganandam, Paulsamy & Francisco, Gerson & de Menezes, Marcio & Ferreira, Fernando F., 2009. "Low dimensional behavior in three-dimensional coupled map lattices," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 997-1004.
    18. Jan G. De Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Monash Econometrics and Business Statistics Working Papers 12/05, Monash University, Department of Econometrics and Business Statistics.
    19. Peter Sephton, 2001. "Forecasting recessions: can we do better on MARS?," Review, Federal Reserve Bank of St. Louis, vol. 83(Mar), pages 39-49.
    20. Michael Funke & Marc Gronwald, 2008. "The Undisclosed Renminbi Basket: Are the Markets Telling Us Something about Where the Renminbi–US Dollar Exchange Rate is Going?," The World Economy, Wiley Blackwell, vol. 31(12), pages 1581-1598, December.
    21. Chun-Teck Lye & Tze-Haw Chan & Chee-Wooi Hooy, 2011. "Nonlinear prediction of Malaysian exchange rate with monetary fundamentals," Economics Bulletin, AccessEcon, vol. 31(3), pages 1960-1967.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecf0:64. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/sceeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.