IDEAS home Printed from https://ideas.repec.org/p/cms/2icb11/2011-270.html
   My bibliography  Save this paper

Nonlinear Analysis Of Chinese And Malaysian Exchange Rates Predictability With Monetary Fundamentals

Author

Listed:
  • Chun-Teck Lye Author_Email: ctlye@mmu.edu.my

    (Centre for Foundation Studies & Extension Education, Multimedia University)

  • Tze-Haw Chan

    (School of Management, Universiti Sains Malaysia)

  • Chee-Wooi Hooy

    (School of Management, Universiti Sains Malaysia)

Abstract

The Chinese Renminbi (RMB) and Malaysian Ringgit (MYR) are pegged to US Dollar during the 1997-98 Asian financial crisis and continued up until the China and Malaysia de-pegged their currencies and announced a new exchange rate regime at the same day on 21st July 2005. By focusing on the post-July 2005 period (August 2005 to July 2010), this paper study the predictability of monthly RMB/USD and MYR/USD exchange rates in different forecast horizons using the generalized regression neural network (GRNN) with discrete and relative monetary fundamentals. Based on a random validation set, the optimal smoothing parameter in the GRNN is attained and subsequently utilized in the optimal GRNN forecasting model for one-step-ahead out-of-sample predictions. The results of the empirical study disclosed that the discrete monetary fundamentals are more informative in the Chinese and Malaysian exchange rates forecasting as compared to the relative monetary fundamentals. Nevertheless, seeing that the overall forecasting performance of the GRNN forecasting models underperformed the random walk benchmark model, the findings revealed that both discrete and relative monetary fundamentals failed to explain the dynamics of Chinese and Malaysian exchange rates except for the case of Chinese Renminbi vis-à-vis the US Dollar in the 12-month forecast horizon
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Chun-Teck Lye Author_Email: ctlye@mmu.edu.my & Tze-Haw Chan & Chee-Wooi Hooy, 2011. "Nonlinear Analysis Of Chinese And Malaysian Exchange Rates Predictability With Monetary Fundamentals," 2nd International Conference on Business and Economic Research (2nd ICBER 2011) Proceeding 2011-270, Conference Master Resources.
  • Handle: RePEc:cms:2icb11:2011-270
    as

    Download full text from publisher

    File URL: http://www.internationalconference.com.my/proceeding/2ndicber2011_proceeding/270-2nd%20ICBER%202011%20PG%201449-1458%20Exchange%20Rates%20Predictability.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Panda, Chakradhara & Narasimhan, V., 2007. "Forecasting exchange rate better with artificial neural network," Journal of Policy Modeling, Elsevier, vol. 29(2), pages 227-236.
    2. Rapach, David E. & Wohar, Mark E., 2002. "Testing the monetary model of exchange rate determination: new evidence from a century of data," Journal of International Economics, Elsevier, vol. 58(2), pages 359-385, December.
    3. Huang, Haizhou & Wang, Shuilin, 2004. "Exchange rate regimes: China's experience and choices," China Economic Review, Elsevier, vol. 15(3), pages 336-342.
    4. Hooper, Peter & Morton, John, 1982. "Fluctuations in the dollar: A model of nominal and real exchange rate determination," Journal of International Money and Finance, Elsevier, vol. 1(1), pages 39-56, January.
    5. Meese, Richard A. & Rogoff, Kenneth, 1983. "Empirical exchange rate models of the seventies : Do they fit out of sample?," Journal of International Economics, Elsevier, vol. 14(1-2), pages 3-24, February.
    6. Rakesh K. Bissoondeeal & Jane M. Binner & Muddun Bhuruth & Alicia Gazely & Veemadevi P. Mootanah, 2008. "Forecasting exchange rates with linear and nonlinear models," Global Business and Economics Review, Inderscience Enterprises Ltd, vol. 10(4), pages 414-429.
    7. Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
    8. Soofi, Abdol S. & Cao, Liangyue, 1999. "Nonlinear deterministic forecasting of daily Peseta-Dollar exchange rate," Economics Letters, Elsevier, vol. 62(2), pages 175-180, February.
    9. Umezaki, So, 2006. "Monetary and Exchange Rate Policy in Malaysia before the Asian Crisis," IDE Discussion Papers 79, Institute of Developing Economies, Japan External Trade Organization(JETRO).
    10. Chan, Tze-Haw & Lye, Chun Teck & Hooy, Chee-Wooi, 2010. "Forecasting Malaysian Exchange Rate: Do Artificial Neural Networks Work?," MPRA Paper 26326, University Library of Munich, Germany.
    11. Joseph Plasmans & William Verkooijen & Hennie Daniels, 1998. "Estimating structural exchange rate models by artificial neural networks," Applied Financial Economics, Taylor & Francis Journals, vol. 8(5), pages 541-551.
    12. Cao, Liangyue & Soofi, Abdol S., 1999. "Nonlinear deterministic forecasting of daily dollar exchange rates," International Journal of Forecasting, Elsevier, vol. 15(4), pages 421-430, October.
    13. Azad, A.S.M. Sohel, 2009. "Random walk and efficiency tests in the Asia-Pacific foreign exchange markets: Evidence from the post-Asian currency crisis data," Research in International Business and Finance, Elsevier, vol. 23(3), pages 322-338, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shamaila Butt & Suresh Ramakrishnan & Nanthakumar Loganathan & Muhammad Ali Chohan, 2020. "Evaluating the exchange rate and commodity price nexus in Malaysia: evidence from the threshold cointegration approach," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-19, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chun-Teck Lye & Tze-Haw Chan & Chee-Wooi Hooy, 2011. "Nonlinear prediction of Malaysian exchange rate with monetary fundamentals," Economics Bulletin, AccessEcon, vol. 31(3), pages 1960-1967.
    2. Cem Kadilar & Muammer Simsek & Cagdas Hakan Aladag, 2009. "Forecasting The Exchange Rate Series With Ann: The Case Of Turkey," Istanbul University Econometrics and Statistics e-Journal, Department of Econometrics, Faculty of Economics, Istanbul University, vol. 9(1), pages 17-29, May.
    3. Rakesh K. Bissoondeeal & Michail Karoglou & Alicia M. Gazely, 2011. "Forecasting The Uk/Us Exchange Rate With Divisia Monetary Models And Neural Networks," Scottish Journal of Political Economy, Scottish Economic Society, vol. 58(1), pages 127-152, February.
    4. Niko Hauzenberger & Florian Huber, 2020. "Model instability in predictive exchange rate regressions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 168-186, March.
    5. Barbara Rossi, 2013. "Exchange Rate Predictability," Journal of Economic Literature, American Economic Association, vol. 51(4), pages 1063-1119, December.
    6. Levent KORAP, 2008. "Exchange Rate Determination Of Tl/Us$:A Co-Integration Approach," Istanbul University Econometrics and Statistics e-Journal, Department of Econometrics, Faculty of Economics, Istanbul University, vol. 7(1), pages 24-50, May.
    7. Christopher J. Neely & Lucio Sarno, 2002. "How well do monetary fundamentals forecast exchange rates?," Review, Federal Reserve Bank of St. Louis, vol. 84(Sep), pages 51-74.
    8. Yuan, Chunming, 2011. "The exchange rate and macroeconomic determinants: Time-varying transitional dynamics," The North American Journal of Economics and Finance, Elsevier, vol. 22(2), pages 197-220, August.
    9. Alejandro Parot & Kevin Michell & Werner D. Kristjanpoller, 2019. "Using Artificial Neural Networks to forecast Exchange Rate, including VAR‐VECM residual analysis and prediction linear combination," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 26(1), pages 3-15, January.
    10. Iregui, Ana María & Núñez, Héctor M. & Otero, Jesús, 2021. "Testing the efficiency of inflation and exchange rate forecast revisions in a changing economic environment," Journal of Economic Behavior & Organization, Elsevier, vol. 187(C), pages 290-314.
    11. Habimana, Olivier, 2017. "The multiscale relationship between exchange rates and fundamentals differentials: Empirical evidence from Scandinavia," MPRA Paper 75956, University Library of Munich, Germany.
    12. Sermpinis, Georgios & Stasinakis, Charalampos & Dunis, Christian, 2014. "Stochastic and genetic neural network combinations in trading and hybrid time-varying leverage effects," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 30(C), pages 21-54.
    13. R. Scott Hacker & Hyunjoo Kim Karlsson & Kristofer Månsson, 2012. "The Relationship between Exchange Rates and Interest Rate Differentials: A Wavelet Approach," The World Economy, Wiley Blackwell, vol. 35(9), pages 1162-1185, September.
    14. Marcos Álvarez-Díaz & Rangan Gupta, 2015. "Forecasting the US CPI: Does Nonlinearity Matter?," Working Papers 201512, University of Pretoria, Department of Economics.
    15. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    16. Jan G. De Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Monash Econometrics and Business Statistics Working Papers 12/05, Monash University, Department of Econometrics and Business Statistics.
    17. de Souza Vasconcelos, Camila & Hadad Júnior, Eli, 2023. "Forecasting exchange rate: A bibliometric and content analysis," International Review of Economics & Finance, Elsevier, vol. 83(C), pages 607-628.
    18. Lai, Lin & Guo, Kun, 2017. "The performance of one belt and one road exchange rate: Based on improved singular spectrum analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 299-308.
    19. Marcos Álvarez-Díaz & Alberto Álvarez, 2002. "Predicción No-Lineal De Tipos De Cambio: Algoritmos Genéticos, Redes Neuronales Y Fusión De Datos," Working Papers 0205, Universidade de Vigo, Departamento de Economía Aplicada.
    20. Dal Bianco, Marcos & Camacho, Maximo & Perez Quiros, Gabriel, 2012. "Short-run forecasting of the euro-dollar exchange rate with economic fundamentals," Journal of International Money and Finance, Elsevier, vol. 31(2), pages 377-396.

    More about this item

    Keywords

    GRNN; Neural network; Random walk; Renminbi; Ringgit;
    All these keywords.

    JEL classification:

    • M0 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cms:2icb11:2011-270. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ihfal (email available below). General contact details of provider: http://www.internationalconference.com.my/proceeding.htm .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.