IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2405.02480.html
   My bibliography  Save this paper

A Network Simulation of OTC Markets with Multiple Agents

Author

Listed:
  • James T. Wilkinson
  • Jacob Kelter
  • John Chen
  • Uri Wilensky

Abstract

We present a novel agent-based approach to simulating an over-the-counter (OTC) financial market in which trades are intermediated solely by market makers and agent visibility is constrained to a network topology. Dynamics, such as changes in price, result from agent-level interactions that ubiquitously occur via market maker agents acting as liquidity providers. Two additional agents are considered: trend investors use a deep convolutional neural network paired with a deep Q-learning framework to inform trading decisions by analysing price history; and value investors use a static price-target to determine their trade directions and sizes. We demonstrate that our novel inclusion of a network topology with market makers facilitates explorations into various market structures. First, we present the model and an overview of its mechanics. Second, we validate our findings via comparison to the real-world: we demonstrate a fat-tailed distribution of price changes, auto-correlated volatility, a skew negatively correlated to market maker positioning, predictable price-history patterns and more. Finally, we demonstrate that our network-based model can lend insights into the effect of market-structure on price-action. For example, we show that markets with sparsely connected intermediaries can have a critical point of fragmentation, beyond which the market forms distinct clusters and arbitrage becomes rapidly possible between the prices of different market makers. A discussion is provided on future work that would be beneficial.

Suggested Citation

  • James T. Wilkinson & Jacob Kelter & John Chen & Uri Wilensky, 2024. "A Network Simulation of OTC Markets with Multiple Agents," Papers 2405.02480, arXiv.org.
  • Handle: RePEc:arx:papers:2405.02480
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2405.02480
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mark Paddrik & Roy Hayes & William Scherer & Peter Beling, 2017. "Effects of limit order book information level on market stability metrics," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 12(2), pages 221-247, July.
    2. Stefan Thurner & J. Doyne Farmer & John Geanakoplos, 2012. "Leverage causes fat tails and clustered volatility," Quantitative Finance, Taylor & Francis Journals, vol. 12(5), pages 695-707, February.
    3. Paul Jefferies & Michael Hart & Neil Johnson & P.M. Hui, 2001. "From market games to real-world markets," OFRC Working Papers Series 2001mf02, Oxford Financial Research Centre.
    4. Levy, Moshe, 2008. "Stock market crashes as social phase transitions," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 137-155, January.
    5. B. Tóth & E. Scalas & J. Huber & M. Kirchler, 2007. "The value of information in a multi-agent market model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 55(1), pages 115-120, January.
    6. P. Jefferies & M.L. Hart & P.M. Hui & N.F. Johnson, 2001. "From market games to real-world markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 20(4), pages 493-501, April.
    7. Warusawitharana, Missaka, 2018. "Time-varying volatility and the power law distribution of stock returns," Journal of Empirical Finance, Elsevier, vol. 49(C), pages 123-141.
    8. Kyungsik Kim & S. -M. Yoon & K. H. Chang, 2004. "Power Law Distributions for Stock Prices in Financial Markets," Papers cond-mat/0412014, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wawrzyniak, Karol & Wiślicki, Wojciech, 2012. "Mesoscopic approach to minority games in herd regime," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(5), pages 2056-2082.
    2. Karlis, Alexandros & Galanis, Girogos & Terovitis, Spyridon & Turner, Matthew, 2017. "Heterogeneity and Clustering of Defaults," Economic Research Papers 270011, University of Warwick - Department of Economics.
    3. Gu, Gao-Feng & Chen, Wei & Zhou, Wei-Xing, 2008. "Empirical regularities of order placement in the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(13), pages 3173-3182.
    4. Chen, Fang & Gou, Chengling & Guo, Xiaoqian & Gao, Jieping, 2008. "Prediction of stock markets by the evolutionary mix-game model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(14), pages 3594-3604.
    5. Xin, C. & Yang, G. & Huang, J.P., 2017. "Ising game: Nonequilibrium steady states of resource-allocation systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 666-673.
    6. Kei Katahira & Yu Chen, 2019. "Heterogeneous wealth distribution, round-trip trading and the emergence of volatility clustering in Speculation Game," Papers 1909.03185, arXiv.org.
    7. Ren, F. & Zhang, Y.C., 2008. "Trading model with pair pattern strategies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(22), pages 5523-5534.
    8. Gou, Chengling, 2006. "Deduction of initial strategy distributions of agents in mix-game models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(2), pages 633-640.
    9. Damien Challet & Tobias Galla, 2005. "Price return autocorrelation and predictability in agent-based models of financial markets," Quantitative Finance, Taylor & Francis Journals, vol. 5(6), pages 569-576.
    10. Stefan Thurner & Rudolf Hanel & Stefan Pichler, 2003. "Risk trading, network topology and banking regulation," Quantitative Finance, Taylor & Francis Journals, vol. 3(4), pages 306-319.
    11. Karlis, Alexandros & Galanis, Giorgos & Terovitis, Spyridon & Turner, Matthew, 2015. "Hedging against Risk in a Heterogeneous Leveraged Market," The Warwick Economics Research Paper Series (TWERPS) 1084, University of Warwick, Department of Economics.
    12. Vogl, Markus, 2023. "Hurst exponent dynamics of S&P 500 returns: Implications for market efficiency, long memory, multifractality and financial crises predictability by application of a nonlinear dynamics analysis framewo," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    13. A. K. Karlis & G. Galanis & S. Terovitis & M. S. Turner, 2021. "Heterogeneity and clustering of defaults," Quantitative Finance, Taylor & Francis Journals, vol. 21(9), pages 1533-1549, September.
    14. Matteo Ortisi & Valerio Zuccolo, 2012. "From Minority Game to Black & Scholes pricing," Papers 1205.2521, arXiv.org, revised May 2013.
    15. Kei Katahira & Yu Chen & Gaku Hashimoto & Hiroshi Okuda, 2019. "Development of an agent-based speculation game for higher reproducibility of financial stylized facts," Papers 1902.02040, arXiv.org.
    16. Montserrat Reyna Miranda & Ricardo Massa Roldán & Vicente Gómez Salcido, 2022. "Neuro-wavelet Model for price prediction in high-frequency data in the Mexican Stock market," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 17(1), pages 1-23, Enero - M.
    17. Lucas Fievet & Didier Sornette, 2018. "Calibrating emergent phenomena in stock markets with agent based models," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-17, March.
    18. Yong Shi & Bo Li & Guangle Du, 2021. "Pyramid scheme in stock market: a kind of financial market simulation," Papers 2102.02179, arXiv.org, revised Feb 2021.
    19. Ohira, Toru & Sazuka, Naoya & Marumo, Kouhei & Shimizu, Tokiko & Takayasu, Misako & Takayasu, Hideki, 2002. "Predictability of currency market exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 308(1), pages 368-374.
    20. Katahira, Kei & Chen, Yu & Hashimoto, Gaku & Okuda, Hiroshi, 2019. "Development of an agent-based speculation game for higher reproducibility of financial stylized facts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 503-518.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2405.02480. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.