IDEAS home Printed from https://ideas.repec.org/p/sas/wpaper/20192.html
   My bibliography  Save this paper

Cointegration, root functions and minimal bases

Author

Listed:
  • Massimo Franchi

    ("Sapienza" University of Rome)

  • Paolo Paruolo

    (European Commission, Joint Research Centre)

Abstract

This paper discusses the concept of cointegrating space for systems integrated of order higher than 1. It is first observed that the notions of (polynomial) cointegrating vectors and of root functions coincide. Second, the cointegrating space is defined as a subspace of the space of rational vectors. Third, it is shown that canonical sets of root functions can be used to generate a basis of the cointegrating space. Fourth, results on how to reduce bases of rational vector spaces to polynomial bases with minimal order (i.e. minimal bases) are shown to imply the separation of cointegrating vectors that potentially do not involve differences of the process from the ones that require them. Finally, it is argued that minimality of polynomial bases and economic identification of cointegrating vectors can be properly combined.

Suggested Citation

  • Massimo Franchi & Paolo Paruolo, 2019. "Cointegration, root functions and minimal bases," DSS Empirical Economics and Econometrics Working Papers Series 2019/2, Centre for Empirical Economics and Econometrics, Department of Statistics, "Sapienza" University of Rome.
  • Handle: RePEc:sas:wpaper:20192
    as

    Download full text from publisher

    File URL: http://www.dss.uniroma1.it/RePec/sas/wpaper/20192_FP.pdf
    File Function: First version, 2019
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Johansen, Soren & Schaumburg, Ernst, 1998. "Likelihood analysis of seasonal cointegration," Journal of Econometrics, Elsevier, vol. 88(2), pages 301-339, November.
    2. Franchi, Massimo & Paruolo, Paolo, 2020. "Cointegration In Functional Autoregressive Processes," Econometric Theory, Cambridge University Press, vol. 36(5), pages 803-839, October.
    3. Hylleberg, S. & Engle, R. F. & Granger, C. W. J. & Yoo, B. S., 1990. "Seasonal integration and cointegration," Journal of Econometrics, Elsevier, vol. 44(1-2), pages 215-238.
    4. Beare, Brendan K. & Seo, Won-Ki, 2020. "Representation Of I(1) And I(2) Autoregressive Hilbertian Processes," Econometric Theory, Cambridge University Press, vol. 36(5), pages 773-802, October.
    5. Granger, C W J & Lee, T H, 1989. "Investigation of Production, Sales and Inventory Relationships Using Multicointegration and Non-symmetric Error Correction Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 4(S), pages 145-159, Supplemen.
    6. Engle, R. F. & Granger, C. W. J. (ed.), 1991. "Long-Run Economic Relationships: Readings in Cointegration," OUP Catalogue, Oxford University Press, number 9780198283393.
    7. Massimo Franchi & Paolo Paruolo, 2019. "A general inversion theorem for cointegration," Econometric Reviews, Taylor & Francis Journals, vol. 38(10), pages 1176-1201, November.
    8. Bauer, Dietmar & Wagner, Martin, 2012. "A State Space Canonical Form For Unit Root Processes," Econometric Theory, Cambridge University Press, vol. 28(6), pages 1313-1349, December.
    9. Gregoir, Stéphane, 1999. "Multivariate Time Series With Various Hidden Unit Roots, Part Ii," Econometric Theory, Cambridge University Press, vol. 15(4), pages 469-518, August.
    10. Mosconi, Rocco & Paruolo, Paolo, 2017. "Identification conditions in simultaneous systems of cointegrating equations with integrated variables of higher order," Journal of Econometrics, Elsevier, vol. 198(2), pages 271-276.
    11. Brendan K. Beare & Juwon Seo & Won-Ki Seo, 2017. "Cointegrated Linear Processes in Hilbert Space," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(6), pages 1010-1027, November.
    12. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    13. Kongsted, Hans Christian, 2005. "Testing the nominal-to-real transformation," Journal of Econometrics, Elsevier, vol. 124(2), pages 205-225, February.
    14. Johansen, Soren, 1991. "Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models," Econometrica, Econometric Society, vol. 59(6), pages 1551-1580, November.
    15. Johansen, Soren, 1988. "Statistical analysis of cointegration vectors," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 231-254.
    16. Johansen, Soren, 1995. "Identifying restrictions of linear equations with applications to simultaneous equations and cointegration," Journal of Econometrics, Elsevier, vol. 69(1), pages 111-132, September.
    17. Johansen, Søren, 1992. "A Representation of Vector Autoregressive Processes Integrated of Order 2," Econometric Theory, Cambridge University Press, vol. 8(2), pages 188-202, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sergej Gričar & Štefan Bojnec, 2021. "Technical Analysis of Tourism Price Process in the Eurozone," JRFM, MDPI, vol. 14(11), pages 1-25, October.
    2. Brendan K. Beare & Massimo Franchi & Phil Howlett, 2024. "The general solution to an autoregressive law of motion," Papers 2402.01966, arXiv.org, revised Sep 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Massimo Franchi, 2017. "On the structure of state space systems with unit roots," DSS Empirical Economics and Econometrics Working Papers Series 2017/4, Centre for Empirical Economics and Econometrics, Department of Statistics, "Sapienza" University of Rome.
    2. Beare, Brendan K. & Seo, Won-Ki, 2020. "Representation Of I(1) And I(2) Autoregressive Hilbertian Processes," Econometric Theory, Cambridge University Press, vol. 36(5), pages 773-802, October.
    3. Massimo Franchi & Paolo Paruolo, 2019. "A general inversion theorem for cointegration," Econometric Reviews, Taylor & Francis Journals, vol. 38(10), pages 1176-1201, November.
    4. Panayiotis Diamantis & Dimitris Georgoutsos & George Kouretas, 2001. "The Monetary Approach in the Presence of I(2) Components: A Cointegration Analysis of the Official and Black Market for Foreign Currency in Latin America," Working Papers 0108, University of Crete, Department of Economics.
    5. Dimitris Georgoutsos & George Kouretas, 2001. "Common Stochastic Trends In International Stock Markets: Testing In An Integrated Framework," Working Papers 0104, University of Crete, Department of Economics.
    6. Haldrup, Niels & Salmon, Mark, 1998. "Representations of I(2) cointegrated systems using the Smith-McMillan form," Journal of Econometrics, Elsevier, vol. 84(2), pages 303-325, June.
    7. Campos, Julia & Ericsson, Neil R. & Hendry, David F., 1996. "Cointegration tests in the presence of structural breaks," Journal of Econometrics, Elsevier, vol. 70(1), pages 187-220, January.
    8. Mårten Löf & Johan Lyhagen, 2003. "On seasonal error correction when the processes include different numbers of unit roots," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(5), pages 377-389.
    9. Arbués, Ignacio & Ledo, Ramiro & Matilla-García, Mariano, 2016. "Automatic identification of general vector error correction models," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 10, pages 1-41.
    10. Dietmar Bauer & Martin Wagner, 2002. "A Canonical Form for Unit Root Processes in the State Space Framework," Diskussionsschriften dp0204, Universitaet Bern, Departement Volkswirtschaft.
    11. H. Peter Boswijk & Paolo Paruolo, 2017. "Likelihood Ratio Tests of Restrictions on Common Trends Loading Matrices in I(2) VAR Systems," Econometrics, MDPI, vol. 5(3), pages 1-17, June.
    12. H. Peter Boswijk & Jurgen A. Doornik, 2004. "Identifying, estimating and testing restricted cointegrated systems: An overview," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 58(4), pages 440-465, November.
    13. Matteo Barigozzi & Marco Lippi & Matteo Luciani, 2020. "Cointegration and Error Correction Mechanisms for Singular Stochastic Vectors," Econometrics, MDPI, vol. 8(1), pages 1-23, February.
    14. Mario Faliva & Maria Grazia Zoia, 2021. "Cointegrated Solutions of Unit-Root VARs: An Extended Representation Theorem," Papers 2102.10626, arXiv.org.
    15. Committee, Nobel Prize, 2003. "Time-series Econometrics: Cointegration and Autoregressive Conditional Heteroskedasticity," Nobel Prize in Economics documents 2003-1, Nobel Prize Committee.
    16. Franses,Philip Hans & Dijk,Dick van & Opschoor,Anne, 2014. "Time Series Models for Business and Economic Forecasting," Cambridge Books, Cambridge University Press, number 9780521520911, October.
    17. Dimitris Georgoutsos & George Kouretas, 2000. "A Multivariate I(2) Cointegration Analysis Of German Hyperinflation," Working Papers 0001, University of Crete, Department of Economics, revised 00 Jul 2001.
    18. John D. Levendis, 2018. "Time Series Econometrics," Springer Texts in Business and Economics, Springer, number 978-3-319-98282-3, April.
    19. Mosconi, Rocco & Paruolo, Paolo, 2014. "Rank and order conditions for identification in simultaneous system of cointegrating equations with integrated variables of order two," MPRA Paper 53589, University Library of Munich, Germany.
    20. Yap, Wei Yim & Lam, Jasmine S.L., 2006. "Competition dynamics between container ports in East Asia," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(1), pages 35-51, January.

    More about this item

    Keywords

    VAR; Cointegration; I(d); Vector spaces.;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sas:wpaper:20192. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Stefano Fachin (email available below). General contact details of provider: https://edirc.repec.org/data/ddrosit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.