IDEAS home Printed from https://ideas.repec.org/p/rsc/rsceui/2013-50.html
   My bibliography  Save this paper

Statistical description of the error on wind power forecasts via a Lévy α-stable distribution

Author

Listed:
  • Kenneth Bruninx
  • Erik Delarue
  • William D'haeseleer

Abstract

As the share of wind power in the electricity system rises, the limited predictability of wind power generation becomes increasingly critical for operating a reliable electricity system. In most operational & economic models, the wind power forecast error (WPFE) is often assumed to have a Gaussian or so-called -distribution. However, these distributions are not suited to fully describe the skewed and heavy-tailed character of WPFE data. In this paper, the Lévy -stable distribution is proposed as an improved description of the WPFE. Based on 6 years of historical wind power data, three forecast scenarios with forecast horizons ranging from 1 to 24 hours are simulated via a persistence approach. The Lévy -stable distribution models the WPFE better than the Gaussian or so-called -distribution, especially for short term forecasts. In a case study, an analysis of historical WPFE data showed improvements over the Gaussian and -distribution between 137 and 567% in terms of cumulative squared residuals. The method presented allows to quantify the probability of a certain error, given a certain wind power forecast. This new statistical description of the WPFE can hold important information for short term economic & operational (reliability) studies in the field of wind power.

Suggested Citation

  • Kenneth Bruninx & Erik Delarue & William D'haeseleer, 2013. "Statistical description of the error on wind power forecasts via a Lévy α-stable distribution," RSCAS Working Papers 2013/50, European University Institute.
  • Handle: RePEc:rsc:rsceui:2013/50
    as

    Download full text from publisher

    File URL: http://cadmus.eui.eu/bitstream/handle/1814/27520/RSCAS_2013_50.pdf?sequence=1
    Download Restriction: no

    File URL: http://hdl.handle.net/1814/27520
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rafał Weron, 2001. "Levy-Stable Distributions Revisited: Tail Index> 2does Not Exclude The Levy-Stable Regime," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 12(02), pages 209-223.
    2. Borak, Szymon & Misiorek, Adam & Weron, Rafał, 2010. "Models for heavy-tailed asset returns," SFB 649 Discussion Papers 2010-049, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    3. Delarue, Erik & D'haeseleer, William, 2008. "Adaptive mixed-integer programming unit commitment strategy for determining the value of forecasting," Applied Energy, Elsevier, vol. 85(4), pages 171-181, April.
    4. De Vos, Kristof & Driesen, Johan & Belmans, Ronnie, 2011. "Assessment of imbalance settlement exemptions for offshore wind power generation in Belgium," Energy Policy, Elsevier, vol. 39(3), pages 1486-1494, March.
    5. Borak, Szymon & Härdle, Wolfgang Karl & Weron, Rafał, 2005. "Stable distributions," SFB 649 Discussion Papers 2005-008, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    6. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    7. Pinson, P. & Nielsen, H.Aa. & Madsen, H. & Kariniotakis, G., 2009. "Skill forecasting from ensemble predictions of wind power," Applied Energy, Elsevier, vol. 86(7-8), pages 1326-1334, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Long Cai & Jie Gu & Jinghuan Ma & Zhijian Jin, 2019. "Probabilistic Wind Power Forecasting Approach via Instance-Based Transfer Learning Embedded Gradient Boosting Decision Trees," Energies, MDPI, vol. 12(1), pages 1-19, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barunik, Jozef & Vacha, Lukas, 2010. "Monte Carlo-based tail exponent estimator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4863-4874.
    2. Weron, Rafał, 2004. "Computationally intensive Value at Risk calculations," Papers 2004,32, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
    3. Taleb, Nassim Nicholas, 2009. "Errors, robustness, and the fourth quadrant," International Journal of Forecasting, Elsevier, vol. 25(4), pages 744-759, October.
    4. Borak, Szymon & Misiorek, Adam & Weron, Rafał, 2010. "Models for heavy-tailed asset returns," SFB 649 Discussion Papers 2010-049, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    5. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2007. "Agent-based Models of Financial Markets," Papers physics/0701140, arXiv.org.
    6. Adam Misiorek & Rafal Weron, 2010. "Heavy-tailed distributions in VaR calculations," HSC Research Reports HSC/10/05, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    7. Dassios, Angelos & Qu, Yan & Zhao, Hongbiao, 2018. "Exact simulation for a class of tempered stable," LSE Research Online Documents on Economics 86981, London School of Economics and Political Science, LSE Library.
    8. Greg Hannsgen, 2011. "Infinite-variance, Alpha-stable Shocks in Monetary SVAR: Final Working Paper Version," Economics Working Paper Archive wp_682, Levy Economics Institute.
    9. Johann Lussange & Ivan Lazarevich & Sacha Bourgeois-Gironde & Stefano Palminteri & Boris Gutkin, 2021. "Modelling Stock Markets by Multi-agent Reinforcement Learning," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 113-147, January.
    10. Salhi, Khaled & Deaconu, Madalina & Lejay, Antoine & Champagnat, Nicolas & Navet, Nicolas, 2016. "Regime switching model for financial data: Empirical risk analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 148-157.
    11. Broda, Simon A. & Haas, Markus & Krause, Jochen & Paolella, Marc S. & Steude, Sven C., 2013. "Stable mixture GARCH models," Journal of Econometrics, Elsevier, vol. 172(2), pages 292-306.
    12. Steinbacher, Matjaz, 2009. "Acceptable Risk in a Portfolio Analysis," MPRA Paper 13569, University Library of Munich, Germany.
    13. Amjady, Nima & Keynia, Farshid, 2010. "A new spinning reserve requirement forecast method for deregulated electricity markets," Applied Energy, Elsevier, vol. 87(6), pages 1870-1879, June.
    14. Marc S. Paolella, 2016. "Stable-GARCH Models for Financial Returns: Fast Estimation and Tests for Stability," Econometrics, MDPI, vol. 4(2), pages 1-28, May.
    15. Paolella, Marc S., 2017. "Asymmetric stable Paretian distribution testing," Econometrics and Statistics, Elsevier, vol. 1(C), pages 19-39.
    16. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    17. Nassim N. Taleb, 2012. "How We Tend To Overestimate Powerlaw Tail Exponents," Papers 1210.1966, arXiv.org.
    18. Scalas, Enrico & Kim, Kyungsik, 2006. "The art of fitting financial time series with Levy stable distributions," MPRA Paper 336, University Library of Munich, Germany.
    19. De Domenico, Federica & Livan, Giacomo & Montagna, Guido & Nicrosini, Oreste, 2023. "Modeling and simulation of financial returns under non-Gaussian distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    20. Dufour, Jean-Marie & Kurz-Kim, Jeong-Ryeol, 2010. "Exact inference and optimal invariant estimation for the stability parameter of symmetric [alpha]-stable distributions," Journal of Empirical Finance, Elsevier, vol. 17(2), pages 180-194, March.

    More about this item

    Keywords

    Error analysis; Lévy a-stable distribution; Statistical analysis; Stable process; Wind power forecasting; Wind power generation;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsc:rsceui:2013/50. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RSCAS web unit (email available below). General contact details of provider: https://edirc.repec.org/data/rsiueit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.