IDEAS home Printed from https://ideas.repec.org/p/ris/qmetal/2024_004.html
   My bibliography  Save this paper

Non-Emptiness of the Core of MCST Games with Revenues: a Necessary and Some Sufficient Conditions

Author

Listed:
  • Subiza, Begoña

    (Universitat d’Alacant, MQiTE and IUDESP)

  • Giménez-Gómez, José Manuel

    (Universitat Rovira i Virgili, Dept. d’Economia and ECO-SOS)

  • Peris, Josep E.

    (Universitat d’Alacant, MQiTE and IUDESP)

Abstract

A minimum cost spanning tree problem analyzes the way to efficiently connect agents to a source when they are located at different places. Estevez-Fernandez and Reijnierse (2014) investigate minimum cost spanning tree problems with revenues, where agents can obtain benefits if they are connected to the source. They figure out that ensuring the non-emptiness of the core in cost-revenue games presents a significant challenge. We address minimum cost spanning tree problems with revenues, focusing on two main objectives: first, to derive general necessary conditions for the non-emptiness of the core; and second, to identify sufficient conditions, within specific contexts, that guarantee that the core is not empty.

Suggested Citation

  • Subiza, Begoña & Giménez-Gómez, José Manuel & Peris, Josep E., 2024. "Non-Emptiness of the Core of MCST Games with Revenues: a Necessary and Some Sufficient Conditions," QM&ET Working Papers 24-4, University of Alicante, D. Quantitative Methods and Economic Theory.
  • Handle: RePEc:ris:qmetal:2024_004
    as

    Download full text from publisher

    File URL: https://web.ua.es/es/dmcte/documentos/qmetwp2404.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Herve Moulin, 2004. "Fair Division and Collective Welfare," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262633116, April.
    2. Feltkamp, V. & Tijs, S.H. & Muto, S., 1994. "On the irreducible core and the equal remaining obligations rule of minimum cost spanning extension problems," Other publications TiSEM 56ea8c64-a05f-4b3f-ab61-9, Tilburg University, School of Economics and Management.
    3. Feltkamp, V. & Tijs, S.H. & Muto, S., 1994. "On the irreducible core and the equal remaining obligations rule of minimum cost spanning extension problems," Discussion Paper 1994-106, Tilburg University, Center for Economic Research.
    4. Bergantinos, Gustavo & Vidal-Puga, Juan J., 2007. "A fair rule in minimum cost spanning tree problems," Journal of Economic Theory, Elsevier, vol. 137(1), pages 326-352, November.
    5. Estévez-Fernández, Arantza & Reijnierse, Hans, 2014. "On the core of cost-revenue games: Minimum cost spanning tree games with revenues," European Journal of Operational Research, Elsevier, vol. 237(2), pages 606-616.
    6. Gustavo Bergantiños & Juan Vidal-Puga, 2021. "A review of cooperative rules and their associated algorithms for minimum-cost spanning tree problems," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 12(1), pages 73-100, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Subiza, Begoña & Giménez, José Manuel & Peris, Josep E., 2015. "Folk solution for simple minimum cost spanning tree problems," QM&ET Working Papers 15-7, University of Alicante, D. Quantitative Methods and Economic Theory.
    2. José-Manuel Giménez-Gómez & Josep E. Peris & Begoña Subiza, 2022. "A claims problem approach to the cost allocation of a minimum cost spanning tree," Operational Research, Springer, vol. 22(3), pages 2785-2801, July.
    3. Davila-Pena, Laura & Borm, Peter & Garcia-Jurado, Ignacio & Schouten, Jop, 2023. "An Allocation Rule for Graph Machine Scheduling Problems," Other publications TiSEM 17013f33-1d65-4294-802c-b, Tilburg University, School of Economics and Management.
    4. José-Manuel Giménez-Gómez & Josep E Peris & Begoña Subiza, 2020. "An egalitarian approach for sharing the cost of a spanning tree," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-14, July.
    5. Christian Trudeau, 2023. "Minimum cost spanning tree problems as value sharing problems," International Journal of Game Theory, Springer;Game Theory Society, vol. 52(1), pages 253-272, March.
    6. Bergantiños, Gustavo & Vidal-Puga, Juan, 2020. "Cooperative games for minimum cost spanning tree problems," MPRA Paper 104911, University Library of Munich, Germany.
    7. Davila-Pena, Laura & Borm, Peter & Garcia-Jurado, Ignacio & Schouten, Jop, 2023. "An Allocation Rule for Graph Machine Scheduling Problems," Discussion Paper 2023-009, Tilburg University, Center for Economic Research.
    8. Dutta, Bhaskar & Mishra, Debasis, 2012. "Minimum cost arborescences," Games and Economic Behavior, Elsevier, vol. 74(1), pages 120-143.
    9. Hernández, Penélope & Peris, Josep E. & Vidal-Puga, Juan, 2023. "A non-cooperative approach to the folk rule in minimum cost spanning tree problems," European Journal of Operational Research, Elsevier, vol. 307(2), pages 922-928.
    10. Moretti, S. & Alparslan-Gok, S.Z. & Brânzei, R. & Tijs, S.H., 2008. "Connection Situations under Uncertainty," Other publications TiSEM e9771ffd-ce59-4b8d-a2c8-d, Tilburg University, School of Economics and Management.
    11. Liu, Siwen & Borm, Peter & Norde, Henk, 2023. "Induced Rules for Minimum Cost Spanning Tree Problems : Towards Merge-Proofness and Coalitional Stability," Other publications TiSEM bf366633-5301-4aad-81c8-a, Tilburg University, School of Economics and Management.
    12. Gustavo Bergantiños & Juan Vidal-Puga, 2021. "A review of cooperative rules and their associated algorithms for minimum-cost spanning tree problems," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 12(1), pages 73-100, March.
    13. Bogomolnaia, Anna & Moulin, Hervé, 2010. "Sharing a minimal cost spanning tree: Beyond the Folk solution," Games and Economic Behavior, Elsevier, vol. 69(2), pages 238-248, July.
    14. Begoña Subiza & Josep E. Peris, 2021. "Sharing the cost of maximum quality optimal spanning trees," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 470-493, July.
    15. Eric Bahel & Christian Trudeau, 2016. "From spanning trees to arborescences: new and extended cost sharing solutions," Working Papers 1601, University of Windsor, Department of Economics.
    16. Chun, Youngsub & Lee, Joosung, 2012. "Sequential contributions rules for minimum cost spanning tree problems," Mathematical Social Sciences, Elsevier, vol. 64(2), pages 136-143.
    17. Trudeau, Christian, 2014. "Minimum cost spanning tree problems with indifferent agents," Games and Economic Behavior, Elsevier, vol. 84(C), pages 137-151.
    18. Christian Trudeau, 2014. "Characterizations of the cycle-complete and folk solutions for minimum cost spanning tree problems," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 42(4), pages 941-957, April.
    19. Kusunoki, Yoshifumi & Tanino, Tetsuzo, 2017. "Investigation on irreducible cost vectors in minimum cost arborescence problems," European Journal of Operational Research, Elsevier, vol. 261(1), pages 214-221.
    20. Jens Hougaard & Hervé Moulin & Lars Østerdal, 2010. "Decentralized pricing in minimum cost spanning trees," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 44(2), pages 293-306, August.

    More about this item

    Keywords

    Minimum cost spanning tree problem; Cost-revenue game; Core;
    All these keywords.

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games
    • D63 - Microeconomics - - Welfare Economics - - - Equity, Justice, Inequality, and Other Normative Criteria and Measurement
    • D71 - Microeconomics - - Analysis of Collective Decision-Making - - - Social Choice; Clubs; Committees; Associations

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:qmetal:2024_004. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Julio Carmona (email available below). General contact details of provider: https://edirc.repec.org/data/dmalies.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.