IDEAS home Printed from https://ideas.repec.org/p/ris/kieppa/2011_009.html
   My bibliography  Save this paper

국제곡물가격의 변동성 요인분석과 한국의 정책적 대응 (The Determinants of Price Volatility in Food Crops and Policy Implications for Korea)

Author

Listed:
  • Suh , Jin Kyo

    (Korea Institute for International Economic Policy)

  • Lee , Jun Won

    (Korea Institute for International Economic Policy)

  • Kim , Hanho

    (Seoul National University)

Abstract

지구상의 어느 국가든 식량곡물의 안정적 확보를 위해 우선적으로 국내 생산 및 공급을 중시한다. 따라서 국제곡물시장에서 거래되는 물량은 생산량 가운데 국내 소비를 제외하고 남은 일부로 국제곡물시장은 생산량 대비 교역량의 비중이 작은 전형적인 ‘엷은 시장(thin market)’이다. 또한 국제곡물시장은 상위 4~5개 수출국이 전체 수출물량의 70% 이상을 점유하는 반면 수입은 다수의 국가로 이루어져 있는 ‘공급자 과점시장’이다. 따라서 수출국 가운데 어느 한 국가의 수출에 차질이 생기면 곧바로 시장에 큰 충격을 주게 된다. 여기에 곡물 자체의 낮은 수급탄력성이 더해져 조그마한 수급변화에도 국제곡물가격은 크게 변하는 특성을 가지고 있다. 이러한 특징을 가지고 있는 곡물 가운데 식량안보에 중요한 쌀, 밀, 옥수수, 대두 등 4개 곡물을 선정해 ARIMA, GARCH/EGARCH 시계열모형을 설정하여 달러 표시 실질 국제가격의 변동성을 계측한 결과, 쌀은 분석대상 전 기간(1960~2011년)에 걸쳐 가격변동성의 증감이 반복되는 가운데 2008~ 09년의 변동성이 가장 큰 것으로 나타났다. 옥수수도 쌀 마찬가지로 변동성 증감이 반복되었지만 다른 곡물과 달리 1980년대 후반의 가격변동성이 지난 50년 동안 가장 큰 특징을 보였다. 대두와 밀은 서로 유사한 가격변동성 흐름을 보였다. 두 곡물 모두 1970년대 초반 가격변동성이 지난 50년간에 걸쳐 가장 큰 것으로 나타났으며, 이후 변동성이 감소하다가 2000년 이후 다시 증가하는 모습을 보였다. 한편 전기와 후기 변동성 계측치 평균의 상이성을 통계적으로 검증한 결과 옥수수를 제외한 쌀, 밀은 후기 변동성 계측치의 평균이 전기 변동성 계측치의 평균 보다 더 큰 것으로 검증되어 쌀과 밀은 전기에 비해 후기에 가격변동성이 더 커졌다고 할 수 있으며, 대두는 반대로 후기에 들어 변동성이 작아졌고, 옥수수는 전기와 후기의 변동성 평균값 차이가 통계적으로 유의하지 않아 후기의 변동성이 켜졌다고 보기 어려운 것으로 나타났다. 변동성 계측 및 전ㆍ후기 변동성 평균값의 검정결과 쌀과 밀의 경우 최근 들어 가격변동성이 커졌다고 할 수 있으며, 대두는 오히려 변동성이 감소했고, 옥수수는 변동성 증대 여부를 통계적으로 검증하기 어려운 것으로 나타났다. 국제곡물가격의 변동성 요인을 동태패널모형으로 분석한 결과 전기 자체 변동성이 현시점에서의 변동성에 가장 큰 영향을 주는 것으로 나타났다. 이는 국제곡물가격의 변동성이 확대되면 이후 그 영향은 점차 감소되지만 지속적인 영향을 준다는 것을 의미한다. 따라서 정책적으로 변동성이 증폭되기 전에 조기 완화의 필요성이 그 만큼 중요함을 의미한다. 한편 국제곡물가격의 변동성에 영향을 주는 요인으로 재고수준과 달러화 가치 및 국제유가의 변동성, 그리고 지수펀드 등의 곡물선물시장의 투기적 거래 증가 등이 통계적으로 의미 있는 변수로 나타났다. 재고증가는 가격변동성을 완화시키는 반면 달러화 가치 변동과 국제유가 변동성은 곡물가격의 변동성을 증폭시키는 것으로 나타났으며, 곡물선물시장의 투기적 거래증가도 곡물가격의 변동성을 확대시키는 것으로 나타났다. 개별 곡물의 가격변동성 요인을 분석하기 위한 연립방정식모형 추정결과 국제 쌀 가격의 변동성은 전기 자체가격 변동성과 밀의 국제가격 변동성, 그리고 달러화 가치 및 국제유가의 변동성에 비례하여 커졌다. 반면 쌀의 단수 변화와 쌀 가격의 변동성은 역관계이고, 국제유가 변동성과 투기적 거래 증가는 가격변동성과 정( )관계로 나타났다. 밀의 국제가격 변동성은 전기 자체가격 변동성과 함께 쌀 및 대두 가격의 변동성에 가장 큰 영향을 받는 것으로 나타났다. 옥수수의 가격변동성에 영향을 주는 요인은 재고와 투기적 거래 이외 다른 요인들은 통계적으로 유의하지 않은 것으로 나타났다. 대두의 경우 자체 전기 가격변동성과 재고 수준이 변동성에 가장 큰 영향을 주는 것으로 나타났다. 국제곡물가격의 변동성 전이효과를 보기 위한 VAR 모형 추정 결과, 국내 수입쌀 가격의 변동성에 영향을 주는 요인은 대부분 통계적으로 유의하지 않았다. 이는 우리나라 쌀 수입구조의 특성 때문으로 보인다. 국내 옥수수 수입가격 변동성은 5개월 전 국제 밀 가격의 변동성과, 3개월과 4개월 전 국제 쌀 가격의 변동성, 그리고 4개월 및 5개월 전 국제 옥수수 및 대두가격의 변동성에 지속적으로 영향을 받는 것으로 나타났다. 국내 대두 수입가격 변동성은 5개월 전 국제 대두가격 변동성 및 국제 옥수수 가격의 변동성에 영향을 받는 것으로 나타났으며, 국내 밀 수입가격 변동성은 5개월 전 국제 밀 가격의 변동성과 4개월 전 국제 옥수수 가격의 변동성에 영향을 받는 것으로 나타났다. 한편 곡물별 예측오차의 분산분해 결과 쌀은 국제곡물가격의 변동성에 큰 영향을 받지 않는 것으로 나타났다. 옥수수의 경우 수입가격 변동성은 국제 옥수수 가격 변동성에 가장 큰 영향을 받으며, 그 다음으로 밀과 쌀의 영향력이 큰 것으로 나타났다. 국내 대두 수입가격 변동성은 같은 곡물인 대두보다 다른 곡물의 국제가격 변동성에 많은 영향을 받는 것으로 나타났다. 국내 밀 수입가격 변동성의 경우 국제 밀 가격 변동성이 가장 큰 영향을 주는 것으로 나타났고, 국제 옥수수 가격의 변동성은 대체로 낮게 나타났다. 이를 종합하면 우리나라의 수입곡물가격의 변동성은 쌀을 제외하고는 대체적으로 국제곡물가격의 변동성에 영향을 받는다고 할 수 있다. 이와 같은 국제곡물가격의 변동성 계측결과와 변동성 요인분석 결과에 기초해 변동성 완화를 위한 국제협력방안으로 다음과 같은 대책이 필요하다. 첫째, 변동성에 영향을 주는 근본 요인으로 안정적 재고유지가 중요하다. 특히 곡물수급에 있어 일시적인 충격에 충분히 대응할 수 있는 국제적인 완충재고의 유지 및 관리가 필요하다. 아울러 중장기적으로 곡물공급능력을 제고하기 위해 농업생산 및 유통ㆍ저장 부문에 대한 투자도 필요하다. 둘째, 국제곡물가격의 변동성 완화를 위해 달러화가치 및 국제유가 변동성을 줄이는 것이 중요하다. 이는 어느 한 나라의 힘으로는 불가능하며, 동시에 경제의 다른 부문과도 밀접히 연계되어 있어 미국과 산유국을 중심으로 한 국제협력이 필수다. 국제거래의 근간인 달러화의 가치 안정과 핵심 에너지원인 원유가격의 안정은 세계 경제나 무역에서 중요한 이슈이므로 G20 재무장관회의에서 지속적으로 논의되어야 할 것이다. 셋째, 곡물선물에 대한 지수펀드 등의 투기적 거래에 대한 적정 수준의 제약이 필요하다. 이를 위해 국제적으로 공신력 있는 기관에서 실시간 선물시장의 동향을 감시하고, 정기적으로 조사결과를 발표해야 한다. 특히 특정 수준을 초과하는 거래증가를 규제할 법적인 뒷받침도 만들어져야 한다. 그럼에도 불구하고 곡물 순수입국 입장에서 자국의 식량안보를 전적으로 국제적인 협력에만 의존할 수는 없을 것이다. 이러한 차원에서 국내적으로 조기경보시스템을 구축하고 최소한의 곡물비축을 해야 한다. 이와 함께 중장기적으로 국제곡물선물시장에 진입하여 선물과 옵션을 적절히 이용한 가상의 금융적 비축시스템을 구축, 운용해야 하며, 실제 곡물유통에 참여하는 방안도 병행해야 한다. International prices of major crops rose dramatically from late 2006 through mid 2008. Price collapsed dramatically in the second half of 2008 with the onset of the financial crisis. This episode is often referred to as the “2008 agflation”. It seems that such a price swing appears again. Between early June 2010 and February 2011, the price of grain increased sharply, surpassing the 2008 peaks that had spread anxiety among policymakers and low income consumers around the world. A number of studies have discussed the factors which lie behind the 2008 agflation. A large number of potential explanation is avaliable. Those given greatest prominence are i) rapid economic growth, particularly in China and other Asian economies, ii) decades of underdevelopment in agriculture, ⅲ) low inventory levels, iv) depreciation of the US dollar, v) speculative influences. However, there is still in debates of whether grain prices have become more variable. When looked at in the long term, there is little or no evidence that volatility in international agricultural commodity prices, as measured using standard statistical measures is increasing and this finding applies to both nominal and real prices. Volatility has, however, been higher during the decade since 2000 than during the previous two decades and this is also the case of wheat and rice prices in the most recent years (2006~2010) compared to the nineteen seventies. To answer a basic question has grain price volatility risen? this study sets up GARCH (Generalized Autoregressive Conditional Heteroscedasticity)-type models and measures exact volatilities for rice, wheat, corn, and soybeans, which are important for food security of net food importing countries. The GARCH model is now the standard procedure for modelling volatility in financial markets. GARCH specifies an ARMA (AutoRegressive Moving Average) process for the variance scedastic process followed by a time series to yield an estimate of the conditional variance of the process at each date in the sample. To summarize, this analysis has generated three conclusions: a) International rice and wheat price volatility was generally higher over the past two decades than in the nineteen seventies and eighties, the major exception being soybean; b) Although many grains exhibited high volatility over three year periods 2006-08, and this volatility persists to the present, these volatilities are generally in line within historical experience, except rice; c) There is weak evidence that volatility levels may be increasing relative to historical levels across the grains. However, we will need to wait for a few more years to now whether this is indeed the case. There is also considerable empirical evidence that the volatility in agricultural prices has changed over the recent decade. It is not only the levels of prices which have had powerful effects, but also their volatilities. Increasing volatility is a concern for agricultural producers and for other agents along the food chain. Price volatility can have a long run impact on the incomes of many producers and the trading positions of countries, and can make planning production more difficult. Moreover, adequate mechanisms to reduce or manage risk to producers do not exist in many markets and/or countries. Therefore, an understanding the nature of volatility is required in order to mitigate its effects, particularly in developing countries. In order to examine the nature and determinants of volatility in food crops, this study sets up both the dynamic panel model and the system equation models. The dynamic panel regression approach is useful for catching a number of key variables which can explain grain volatility as a whole, while the system equation approach has advantages of considering the interrelation among each crop. The results of the analysis can be summarized as following. There is convincing evidence that many of the candidate variables have an impact on grain volatility. Inventory-use ratios have significant effects on grain volatility, being negatively affected. For some individual commodities, the relationship does appear to be stronger, with wheat the clearest example. Oil price volatility has a positive impact on grain price volatility. Thus, the recent coincidental high volatility in oil and grain prices is symptomatic of a connection between grain price volatility and oil price volatility. The link between oil prices and grain prices is likely to arise through the impact of energy prices on the costs of production, along with the alternative use of some crops for biofuel production. Therefore, we would expect the link between oil price volatility and grain prices to continue or strengthen as the biofuels sector grows. Likewise, exchange rate volatility was found to influence the volatility of agricultural prices. Thus, perhaps unsurprisingly, if the global economy is experiencing high levels of volatility these will also be reflected in agricultural prices. Higher inflation volatility tends to increase grain price variation. The sensitivities vary quite widely across commodities, but in most cases the relationship is highly significant. Higher levels of the U.S. inflation, also have a consistent impact to most gains, being significantly and positively affected. Higher futures market volumes increase the volatility in grains. The effect is statistically significant, but economically small. Policy options to reduce the grain price volatility a) Emergency food reserves Relatively smaller food security emergency reserves can be used effectively and at lower cost to assist the most vulnerable. Unlike buffer stocks that attempt to offset price movements and which act as universal subsidies benefiting both poor and non-poor consumers, emergency food reserves can make food available to vulnerable population groups in times of crisis. In addition, emergency reserves of relatively small quantities of staple foods will not disrupt normal private sector market development which is needed for long term food security. b) International safety nets In times of crisis, contingent and compensatory financing facilities are important mechanisms assisting countries to avoid major fiscal deficits, and lower the cost of imported food, while maintaining key social assistance programmes. The World Bank is currently helping countries deal with the food crisis through instruments to help manage short-term impacts, including grant funding for rapid response in the poorest and most vulnerable countries and expedited use of International Development Assistance (IDA) and International Bank for Reconstruction and Development (IBRD) funds under programs such as the Global Food Crisis Response Program (GFRP), as well as increased Regular IDA and IBRD lending, policy advice and technical assistance. c) Risk management for governments For price risks, the principal instruments that could be used to manage the price volatility of food import bills are futures and options contracts (financial instruments) or over the-counter (OTC) contracts (physical instrument). The main difference between them is that financial instruments can provide a country with a cash payout to enable them to offset higher food prices for physical imports, whereas physical instruments seek to manage price and supply risk and provide for the physical import of the food. Both types of instruments are offered by financial institutions and traders. By buying futures contracts, a government which wishes to protect itself against a possible grains price surge “locks” in a price agreed at the time the contract was concluded. With futures contracts the country will obtain greater certainty over the price, but not flexibility. Call option contracts “lock” in a maximum price, but with no obligation to buy at that price if market conditions are favourable for the government (i.e. if prices have moved lower). The country will still be able to benefit from lower prices after the agreement, as they do not have to purchase at the agreed price. This approach provides certainty about a maximum price and flexibility. Significant investment is needed to overcome the lack of technical expertise on the use of these instruments in developing countries. Experience has shown that engaging developing and emerging countries on risk management takes a sustained effort to build capacity to the point where decision-makers are comfortable with the use of risk management tools. Globally there is a need to learn lessons from countries such as Mexico that have become sophisticated in developing a framework for analyzing risks and taking innovative steps to manage those risks. Finally, it is important to recognize that there is no single risk management tool that will meet the diverse needs of countries exposed to price volatility, particularly given the complexity of local market and policy environments. Solutions need to be highly customized, drawing on a mix of different tools and responses. A successful approach to strengthening risk management frameworks in low income countries will need to build on existing capacities, create platforms which allow private sector market participants to be part of the solution, and find ways to overcome the major constraints to greater use of risk management tools: weak legal/regulatory frameworks, poor credit standing, and a lack of knowledge, understanding, and confidence about how to use these tools.

Suggested Citation

  • Suh , Jin Kyo & Lee , Jun Won & Kim , Hanho, 2011. "국제곡물가격의 변동성 요인분석과 한국의 정책적 대응 (The Determinants of Price Volatility in Food Crops and Policy Implications for Korea)," Policy Analyses 11-9, Korea Institute for International Economic Policy.
  • Handle: RePEc:ris:kieppa:2011_009
    DOI: 10.2139/ssrn.2321523
    Note: Downloadable document is in Korean.
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.2139/ssrn.2321523
    File Function: Full text
    Download Restriction: no

    File URL: https://libkey.io/10.2139/ssrn.2321523?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. G. I. Idrisov & V. N. Knyaginin & A. L. Kudrin & E. S. Rozhkova, 2018. "New technological revolution: Challenges and opportunities for Russia," Voprosy Ekonomiki, NP Voprosy Ekonomiki, issue 4.
    2. Rudra P. Pradhan & Mak B. Arvin & Mahendhiran Nair & Sara E. Bennett & John H. Hall, 2019. "The information revolution, innovation diffusion and economic growth: an examination of causal links in European countries," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(3), pages 1529-1563, May.
    3. Hummera Saleem & Malik Shahzad & Muhammad Bilal Khan & Bashir Ahmad Khilji, 2019. "Innovation, total factor productivity and economic growth in Pakistan: a policy perspective," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 8(1), pages 1-18, December.
    4. Bernstein, Jeffrey I. & Nadiri, M. Ishaq, 1990. "Product Demand, Cost Of Production, Spillovers And The Social Rate Or Return To R&D," Working Papers 90-53, C.V. Starr Center for Applied Economics, New York University.
    5. Andrzej Kacprzyk & Iwona Świeczewska, 2019. "Is R&D always growth-enhancing? Empirical evidence from the EU countries," Applied Economics Letters, Taylor & Francis Journals, vol. 26(2), pages 163-167, January.
    6. Romer, Paul M, 1990. "Endogenous Technological Change," Journal of Political Economy, University of Chicago Press, vol. 98(5), pages 71-102, October.
    7. Jingjing Yang, 2019. "Corporate innovation in China and its implications," Asian-Pacific Economic Literature, The Crawford School, The Australian National University, vol. 33(1), pages 21-32, May.
    8. Giorgio d'Agostino & Margherita Scarlato, 2019. "Knowledge externalities, innovation and growth in European countries: the role of institutions," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 28(1), pages 82-99, January.
    9. G. I. Idrisov & V. N. Knyaginin & A. L. Kudrin & E. S. Rozhkova., 2018. "New technological revolution: Challenges and opportunities for Russia," VOPROSY ECONOMIKI, N.P. Redaktsiya zhurnala "Voprosy Economiki", vol. 4.
    10. Juho Kiuru & Tommi Inkinen, 2019. "E-Capital and Economic Growth in European Metropolitan Areas: Applying Social Media Messaging in Technology-Based Urban Analysis," Journal of Urban Technology, Taylor & Francis Journals, vol. 26(2), pages 67-88, April.
    11. V. Rodriguez & A. Soeparwata, 2015. "The Governance of Science, Technology and Innovation in ASEAN and Its Member States," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 6(2), pages 228-249, June.
    12. George A Shinkle & Jo-Ann Suchard, 2019. "Innovation in newly public firms: The influence of government grants, venture capital, and private equity," Australian Journal of Management, Australian School of Business, vol. 44(2), pages 248-281, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Henrik Braconier & Fredrik Sjöholm, 1998. "National and international spillovers from R&D: Comparing a neoclassical and an endogenous growth approach," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 134(4), pages 638-663, December.
    2. Bin Amin, Sakib & Taghizadeh-Hesary, Farhad & Khan, Farhan & Manal Rahman, Faria, 2024. "Does technology have a lead or lag role in economic growth? The case of selected resource-rich and resource-scarce countries," Resources Policy, Elsevier, vol. 89(C).
    3. Anupam Jena & Casey Mulligan & Tomas J. Philipson & Eric Sun, 2008. "The Value of Life in General Equilibrium," NBER Working Papers 14157, National Bureau of Economic Research, Inc.
    4. G Cameron, 1996. "Innovation and Economic Growth," CEP Discussion Papers dp0277, Centre for Economic Performance, LSE.
    5. Nguyen, Canh Phuc & Doytch, Nadia, 2022. "The impact of ICT patents on economic growth: An international evidence," Telecommunications Policy, Elsevier, vol. 46(5).
    6. Nair, Mahendhiran & Pradhan, Rudra P. & Arvin, Mak B., 2020. "Endogenous dynamics between R&D, ICT and economic growth: Empirical evidence from the OECD countries," Technology in Society, Elsevier, vol. 62(C).
    7. Kais Mtar & Walid Belazreg, 2023. "On the nexus of innovation, trade openness, financial development and economic growth in European countries: New perspective from a GMM panel VAR approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(1), pages 766-791, January.
    8. Robin Johnson & W. A. Razzak & Steven Stillman, 2007. "Has New Zealand benefited from its investments in research & development?," Applied Economics, Taylor & Francis Journals, vol. 39(19), pages 2425-2440.
    9. Afonso, Oscar & Bandeira, Ana Maria & Lima, Pedro G., 2022. "Growth and welfare effects of corruption penalties," Economic Systems, Elsevier, vol. 46(3).
    10. Michael Kremer, 1998. "Patent Buyouts: A Mechanism for Encouraging Innovation," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 113(4), pages 1137-1167.
    11. Fernández-Portillo, Antonio & Almodóvar-González, Manuel & Hernández-Mogollón, Ricardo, 2020. "Impact of ICT development on economic growth. A study of OECD European union countries," Technology in Society, Elsevier, vol. 63(C).
    12. Robert Wieser, 2005. "Research And Development Productivity And Spillovers: Empirical Evidence At The Firm Level," Journal of Economic Surveys, Wiley Blackwell, vol. 19(4), pages 587-621, September.
    13. Utumporn Jitsutthiphakorn, 2021. "Innovation, firm productivity, and export survival: firm-level evidence from ASEAN developing countries," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 10(1), pages 1-17, December.
    14. Jian Xu & Yongrong Cao, 2019. "Innovation, the Flying Geese Model, IPR Protection, and Sustainable Economic Development in China," Sustainability, MDPI, vol. 11(20), pages 1-27, October.
    15. Alvarez, Roberto & Bravo-Ortega, Claudio & Poniachik, Dan, 2023. "Understanding R&D transitions: From bottom to top?," Economic Systems, Elsevier, vol. 47(4).
    16. Yu, Haijing & Devece, Caarlos & Martinez, José Manuel Guaita & Xu, Bing, 2021. "An analysis of the paradox in R&D. Insight from a new spatial heterogeneity model," Technological Forecasting and Social Change, Elsevier, vol. 165(C).
    17. Inna S. Lola & Murat Bakeev, 2020. "Digital Transformation In Manufacturing: Drivers, Barriers, And Benefits," HSE Working papers WP BRP 107/STI/2020, National Research University Higher School of Economics.
    18. Charles Shaaba Saba & Nicholas Ngepah & Nicholas M. Odhiambo, 2024. "Information and Communication Technology (ICT), Growth and Development in Developing Regions: Evidence from a Comparative Analysis and a New Approach," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(3), pages 14700-14748, September.
    19. Raquel Ortega-Argilés, 2013. "R&D, knowledge, economic growth and the transatlantic productivity gap," Chapters, in: Frank Giarratani & Geoffrey J.D. Hewings & Philip McCann (ed.), Handbook of Industry Studies and Economic Geography, chapter 11, pages 271-302, Edward Elgar Publishing.
    20. Petri Rouvinen, 2002. "The existence of R&D spillovers: A cost function estimation with random coefficients," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 11(6), pages 525-541.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:kieppa:2011_009. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Juwon Seo (email available below). General contact details of provider: https://edirc.repec.org/data/kieppkr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.