IDEAS home Printed from https://ideas.repec.org/p/ris/fcnwpa/2013_012.html
   My bibliography  Save this paper

Optimal Power Generation Investment: Impact of Technology Choices and Existing Portfolios for Deploying Low-Carbon Coal Technologies

Author

Listed:
  • Rohlfs, Wilko

    (RWTH Aachen University)

  • Madlener, Reinhard

    (E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN))

Abstract

In this paper we identify optimal strategies for the investment in power generation assets. The investments are characterized by multiple available technologies whose economic value is driven by a technology-specific combination of several underlying assets, such as the price of fuel, electricity, and CO2. The correlation between the development of those underlying assets allows for diversification and thus to reduce the overall risk by holding a portfolio of different technologies. This yields an investor-dependent strategy for the deployment of new energy generation assets. The modeling framework developed is based on stochastic real options analysis that enables to account for the additional value of waiting which arises from uncertain commodity price development. In the presentation, we increase the model’s complexity stepwise, in order to depict the influences of various aspects, as for instance the interaction of technologies, value of waiting, or modification of an existing power plant portfolio. We find that including the value of waiting in the decision process not only delays the investment but also leads to an asymmetric risk distribution which features a much lower probability for losses. In addition, the results where the value of waiting is incorporated are more robust with respect to a variation of the investor’s risk- and time-preferences compared to the results gained with the classical net present value model. Finally, we investigate the required market conditions needed for the deployment of carbon capture and storage (CCS) technologies. We find that a carbon dioxide price of 60 e/tCO2 and an electricity price of 70 e/MWh is required in the year 2015 in order to reach a probability of at least 50% for the deployment of CCS in 2022.

Suggested Citation

  • Rohlfs, Wilko & Madlener, Reinhard, 2013. "Optimal Power Generation Investment: Impact of Technology Choices and Existing Portfolios for Deploying Low-Carbon Coal Technologies," FCN Working Papers 12/2013, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
  • Handle: RePEc:ris:fcnwpa:2013_012
    as

    Download full text from publisher

    File URL: http://www.fcn.eonerc.rwth-aachen.de/global/show_document.asp?id=aaaaaaaaaagvwbl
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hammond, G.P. & Akwe, S.S. Ondo & Williams, S., 2011. "Techno-economic appraisal of fossil-fuelled power generation systems with carbon dioxide capture and storage," Energy, Elsevier, vol. 36(2), pages 975-984.
    2. Rohlfs, Wilko & Madlener, Reinhard, 2010. "Valuation of CCS-Ready Coal-Fired Power Plants: A Multi-Dimensional Real Options Approach," FCN Working Papers 7/2010, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    3. Richard Bellman, 1957. "On a Dynamic Programming Approach to the Caterer Problem--I," Management Science, INFORMS, vol. 3(3), pages 270-278, April.
    4. Andrea Gamba & Lenos Trigeorgis, 2007. "An Improved Binomial Lattice Method for Multi-Dimensional Options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(5), pages 453-475.
    5. Rohlfs, Wilko & Madlener, Reinhard, 2013. "Assessment of clean-coal strategies: The questionable merits of carbon capture-readiness," Energy, Elsevier, vol. 52(C), pages 27-36.
    6. Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474.
    7. Rohlfs, Wilko & Madlener, Reinhard, 2011. "Multi-Commodity Real Options Analysis of Power Plant Investments: Discounting Endogenous Risk Structures," FCN Working Papers 22/2011, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    8. Robert McDonald & Daniel Siegel, 1986. "The Value of Waiting to Invest," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 101(4), pages 707-727.
    9. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    10. Markowitz, Harry M, 1991. "Foundations of Portfolio Theory," Journal of Finance, American Finance Association, vol. 46(2), pages 469-477, June.
    11. Davison, John, 2007. "Performance and costs of power plants with capture and storage of CO2," Energy, Elsevier, vol. 32(7), pages 1163-1176.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andreas Voss and Reinhard Madlener, 2017. "Auction Schemes, Bidding Strategies and the Cost-Optimal Level of Promoting Renewable Electricity in Germany," The Energy Journal, International Association for Energy Economics, vol. 0(KAPSARC S).
    2. Rohlfs, Wilko & Madlener, Reinhard, 2013. "Challenges in the Evaluation of Ultra-Long-Lived Projects: Risk Premia for Projects with Eternal Returns or Costs," FCN Working Papers 13/2013, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rohlfs, Wilko & Madlener, Reinhard, 2011. "Multi-Commodity Real Options Analysis of Power Plant Investments: Discounting Endogenous Risk Structures," FCN Working Papers 22/2011, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    2. Schachter, J.A. & Mancarella, P., 2016. "A critical review of Real Options thinking for valuing investment flexibility in Smart Grids and low carbon energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 261-271.
    3. Hampe, Jona & Madlener, Reinhard, 2012. "Economics of High-Temperature Nuclear Reactors for Industrial Cogeneration," FCN Working Papers 10/2012, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    4. Knaut, Andreas & Madlener, Reinhard & Rosen, Christiane & Vogt, Christian, 2012. "Effects of Temperature Uncertainty on the Valuation of Geothermal Projects: A Real Options Approach," FCN Working Papers 11/2012, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    5. Carlos Andrés Zapata Quimbayo, 2020. "OPCIONES REALES Una guía teórico-práctica para la valoración de inversiones bajo incertidumbre mediante modelos en tiempo discreto y simulación de Monte Carlo," Books, Universidad Externado de Colombia, Facultad de Finanzas, Gobierno y Relaciones Internacionales, number 138.
    6. Rohlfs, Wilko & Madlener, Reinhard, 2013. "Assessment of clean-coal strategies: The questionable merits of carbon capture-readiness," Energy, Elsevier, vol. 52(C), pages 27-36.
    7. Rohlfs, Wilko & Madlener, Reinhard, 2013. "Challenges in the Evaluation of Ultra-Long-Lived Projects: Risk Premia for Projects with Eternal Returns or Costs," FCN Working Papers 13/2013, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    8. Mo, Jian-Lei & Schleich, Joachim & Zhu, Lei & Fan, Ying, 2015. "Delaying the introduction of emissions trading systems—Implications for power plant investment and operation from a multi-stage decision model," Energy Economics, Elsevier, vol. 52(PB), pages 255-264.
    9. Miao, Jianjun & Wang, Neng, 2007. "Investment, consumption, and hedging under incomplete markets," Journal of Financial Economics, Elsevier, vol. 86(3), pages 608-642, December.
    10. Lin, Tyrone T., 2009. "Applying the maximum NPV rule with discounted/growth factors to a flexible production scale model," European Journal of Operational Research, Elsevier, vol. 196(2), pages 628-634, July.
    11. Kroniger, Daniel & Madlener, Reinhard, 2014. "Hydrogen storage for wind parks: A real options evaluation for an optimal investment in more flexibility," Applied Energy, Elsevier, vol. 136(C), pages 931-946.
    12. Bolton, Patrick & Wang, Neng & Yang, Jinqiang, 2019. "Investment under uncertainty with financial constraints," Journal of Economic Theory, Elsevier, vol. 184(C).
    13. Frank Figge, 2005. "Value‐based environmental management. From environmental shareholder value to environmental option value," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 12(1), pages 19-30, March.
    14. Insley, M.C. & Wirjanto, T.S., 2010. "Contrasting two approaches in real options valuation: Contingent claims versus dynamic programming," Journal of Forest Economics, Elsevier, vol. 16(2), pages 157-176, April.
    15. Viju, Crina & Kerr, William A. & Nolan, James F., 2006. "Subsidization of the Biofuel Industry: Security vs. Clean Air?," 2006 Annual meeting, July 23-26, Long Beach, CA 21321, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    16. Marco Antonio Guimaraes Dias & Jose Paulo Teixeira, 2010. "Continuous-Time Option Games: Review of Models and Extensions," Multinational Finance Journal, Multinational Finance Journal, vol. 14(3-4), pages 219-254, September.
    17. Chen, Yu-Fu & Zoega, Gylfi, 2010. "An essay on the generational effect of employment protection," Mathematical Social Sciences, Elsevier, vol. 59(3), pages 349-359, May.
    18. Gabriel P. Mathy, 2020. "How much did uncertainty shocks matter in the Great Depression?," Cliometrica, Springer;Cliometric Society (Association Francaise de Cliométrie), vol. 14(2), pages 283-323, May.
    19. Viju, Crina & Kerr, William A., 2010. "Is The Subsidy For Biofuels The Way To Go?," 14th ICABR Conference, June 16-18, 2010, Ravello, Italy 188117, International Consortium on Applied Bioeconomy Research (ICABR).
    20. Bruno Deffains & Marie Obidzinski, 2009. "Real Options Theory for Law Makers," Recherches économiques de Louvain, De Boeck Université, vol. 75(1), pages 93-117.

    More about this item

    Keywords

    CCS; Real options; Retrofit; Renewable energies;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:fcnwpa:2013_012. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Hendrik Schmitz (email available below). General contact details of provider: https://edirc.repec.org/data/fceonde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.