IDEAS home Printed from https://ideas.repec.org/p/red/sed017/141.html
   My bibliography  Save this paper

Confounding Dynamics

Author

Listed:
  • Todd Walker

    (Indiana University)

Abstract

In the context of a dynamic model with incomplete information, we isolate a novel mechanism of shock propagation that results in waves of optimism and pessimism along a Rational Expectations equilibrium. We term the mechanism confounding dynamics because it arises from agents’ optimal signal extraction efforts on variables whose dynamics—as opposed to superimposed noise—prevents full revelation of information. Employing methods in the space of analytic functions, we are able to obtain analytical characterizations of the equilibria that generalize the celebrated Hansen-Sargent optimal prediction formula. We apply our results to a canonical real business cycle model and derive the analytic solution for output, consumption and capital. We show that, in response to a permanent positive productivity shock, confounding dynamics generate expansions and recessions that would not be present under complete information.

Suggested Citation

  • Todd Walker, 2017. "Confounding Dynamics," 2017 Meeting Papers 141, Society for Economic Dynamics.
  • Handle: RePEc:red:sed017:141
    as

    Download full text from publisher

    File URL: https://red-files-public.s3.amazonaws.com/meetpapers/2017/paper_141.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Manuel Amador & Pierre-Olivier Weill, 2010. "Learning from Prices: Public Communication and Welfare," Journal of Political Economy, University of Chicago Press, vol. 118(5), pages 866-907.
    2. George-Marios Angeletos & Jennifer La'O, 2010. "Noisy Business Cycles," NBER Chapters, in: NBER Macroeconomics Annual 2009, Volume 24, pages 319-378, National Bureau of Economic Research, Inc.
    3. N. Gregory Mankiw & Ricardo Reis, 2002. "Sticky Information versus Sticky Prices: A Proposal to Replace the New Keynesian Phillips Curve," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 117(4), pages 1295-1328.
    4. Jess Benhabib & Pengfei Wang & Yi Wen, 2015. "Sentiments and Aggregate Demand Fluctuations," Econometrica, Econometric Society, vol. 83, pages 549-585, March.
    5. Grossman, Sanford J & Stiglitz, Joseph E, 1980. "On the Impossibility of Informationally Efficient Markets," American Economic Review, American Economic Association, vol. 70(3), pages 393-408, June.
    6. Kenneth Kasa & Todd B. Walker & Charles H. Whiteman, 2014. "Heterogeneous Beliefs and Tests of Present Value Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 81(3), pages 1137-1163.
    7. Hansen, Lars Peter & Sargent, Thomas J., 1980. "Formulating and estimating dynamic linear rational expectations models," Journal of Economic Dynamics and Control, Elsevier, vol. 2(1), pages 7-46, May.
    8. Acharya, Sushant & Benhabib, Jess & Huo, Zhen, 2021. "The anatomy of sentiment-driven fluctuations," Journal of Economic Theory, Elsevier, vol. 195(C).
    9. Klenow, Peter J. & Willis, Jonathan L., 2007. "Sticky information and sticky prices," Journal of Monetary Economics, Elsevier, vol. 54(Supplemen), pages 79-99, September.
    10. Futia, Carl A, 1981. "Rational Expectations in Stationary Linear Models," Econometrica, Econometric Society, vol. 49(1), pages 171-192, January.
    11. Radner, Roy, 1979. "Rational Expectations Equilibrium: Generic Existence and the Information Revealed by Prices," Econometrica, Econometric Society, vol. 47(3), pages 655-678, May.
    12. Tarek A. Hassan & Thomas M. Mertens, 2017. "The Social Cost of Near-Rational Investment," American Economic Review, American Economic Association, vol. 107(4), pages 1059-1103, April.
    13. Olivier Coibion & Yuriy Gorodnichenko, 2012. "What Can Survey Forecasts Tell Us about Information Rigidities?," Journal of Political Economy, University of Chicago Press, vol. 120(1), pages 116-159.
    14. Blanchard, Olivier Jean & Kahn, Charles M, 1980. "The Solution of Linear Difference Models under Rational Expectations," Econometrica, Econometric Society, vol. 48(5), pages 1305-1311, July.
    15. Adam, Klaus, 2007. "Optimal monetary policy with imperfect common knowledge," Journal of Monetary Economics, Elsevier, vol. 54(2), pages 267-301, March.
    16. George-Marios Angeletos & Alessandro Pavan, 2007. "Efficient Use of Information and Social Value of Information," Econometrica, Econometric Society, vol. 75(4), pages 1103-1142, July.
    17. Kenneth Kasa, 2000. "Forecasting the Forecasts of Others in the Frequency Domain," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 3(4), pages 726-756, October.
    18. Philippe Bacchetta & Eric Van Wincoop, 2006. "Can Information Heterogeneity Explain the Exchange Rate Determination Puzzle?," American Economic Review, American Economic Association, vol. 96(3), pages 552-576, June.
    19. Leonardo Melosi, 2017. "Signalling Effects of Monetary Policy," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 84(2), pages 853-884.
    20. Cogley, Timothy & Nason, James M, 1995. "Output Dynamics in Real-Business-Cycle Models," American Economic Review, American Economic Association, vol. 85(3), pages 492-511, June.
    21. Dan Bernhardt & P. Seiler & B. Taub, 2010. "Speculative dynamics," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 44(1), pages 1-52, July.
    22. Walker, Todd B., 2007. "How equilibrium prices reveal information in a time series model with disparately informed, competitive traders," Journal of Economic Theory, Elsevier, vol. 137(1), pages 512-537, November.
    23. Hellwig, Christian & Venkateswaran, Venky, 2009. "Setting the right prices for the wrong reasons," Journal of Monetary Economics, Elsevier, vol. 56(S), pages 57-77.
    24. George-Marios Angeletos & Chen Lian, 2016. "Incomplete Information in Macroeconomics: Accommodating Frictions in Coordination," NBER Working Papers 22297, National Bureau of Economic Research, Inc.
    25. Gregoir, Stephane & Weill, Pierre-Olivier, 2007. "Restricted perception equilibria and rational expectation equilibrium," Journal of Economic Dynamics and Control, Elsevier, vol. 31(1), pages 81-109, January.
    26. Lucas, Robert E, Jr, 1975. "An Equilibrium Model of the Business Cycle," Journal of Political Economy, University of Chicago Press, vol. 83(6), pages 1113-1144, December.
    27. Sims, Christopher A, 2002. "Solving Linear Rational Expectations Models," Computational Economics, Springer;Society for Computational Economics, vol. 20(1-2), pages 1-20, October.
    28. Guido Lorenzoni, 2009. "A Theory of Demand Shocks," American Economic Review, American Economic Association, vol. 99(5), pages 2050-2084, December.
    29. Taub, Bart, 1989. "Aggregate fluctuations as an information transmission mechanism," Journal of Economic Dynamics and Control, Elsevier, vol. 13(1), pages 113-150, January.
    30. Franklin Allen & Stephen Morris & Hyun Song Shin, 2006. "Beauty Contests and Iterated Expectations in Asset Markets," The Review of Financial Studies, Society for Financial Studies, vol. 19(3), pages 719-752.
    31. Nimark, Kristoffer, 2008. "Dynamic pricing and imperfect common knowledge," Journal of Monetary Economics, Elsevier, vol. 55(2), pages 365-382, March.
    32. Graham, Liam & Wright, Stephen, 2010. "Information, heterogeneity and market incompleteness," Journal of Monetary Economics, Elsevier, vol. 57(2), pages 164-174, March.
    33. Klein, Paul, 2000. "Using the generalized Schur form to solve a multivariate linear rational expectations model," Journal of Economic Dynamics and Control, Elsevier, vol. 24(10), pages 1405-1423, September.
    34. Lucas, Robert Jr., 1972. "Expectations and the neutrality of money," Journal of Economic Theory, Elsevier, vol. 4(2), pages 103-124, April.
    35. Joseph G. Pearlman & Thomas J. Sargent, 2005. "Knowing the Forecasts of Others," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 8(2), pages 480-497, April.
    36. Townsend, Robert M, 1983. "Forecasting the Forecasts of Others," Journal of Political Economy, University of Chicago Press, vol. 91(4), pages 546-588, August.
    37. Angeletos, G.-M. & Lian, C., 2016. "Incomplete Information in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 1065-1240, Elsevier.
    38. King, Robert G, 1982. "Monetary Policy and the Information Content of Prices," Journal of Political Economy, University of Chicago Press, vol. 90(2), pages 247-279, April.
    39. Makarov, Igor & Rytchkov, Oleg, 2012. "Forecasting the forecasts of others: Implications for asset pricing," Journal of Economic Theory, Elsevier, vol. 147(3), pages 941-966.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miao, Jianjun & Wu, Jieran & Young, Eric R., 2021. "Macro-financial volatility under dispersed information," Theoretical Economics, Econometric Society, vol. 16(1), January.
    2. Chahrour, Ryan & Ulbricht, Robert, 2017. "Information-driven Business Cycles: A Primal Approach," TSE Working Papers 17-784, Toulouse School of Economics (TSE), revised Dec 2017.
    3. Falck, Elisabeth & Hoffmann, Mathias & Hürtgen, Patrick, 2017. "Disagreement and monetary policy," Discussion Papers 29/2017, Deutsche Bundesbank.
    4. Taub, B., 2023. "Signal-jamming in the frequency domain," Games and Economic Behavior, Elsevier, vol. 142(C), pages 896-930.
    5. Huo, Zhen & Pedroni, Marcelo, 2023. "Dynamic information aggregation: Learning from the past," Journal of Monetary Economics, Elsevier, vol. 136(C), pages 107-124.
    6. Acharya, Sushant & Benhabib, Jess & Huo, Zhen, 2021. "The anatomy of sentiment-driven fluctuations," Journal of Economic Theory, Elsevier, vol. 195(C).
    7. Kwangyong Park, 2023. "Central Bank Credibility and Monetary Policy," International Journal of Central Banking, International Journal of Central Banking, vol. 19(2), pages 145-197, June.
    8. Ryan Chahrour & Robert Ulbricht, 2023. "Robust Predictions for DSGE Models with Incomplete Information," American Economic Journal: Macroeconomics, American Economic Association, vol. 15(1), pages 173-208, January.
    9. Eric M. Leeper, 2015. "Fiscal Analysis is Darned Hard," CAEPR Working Papers 2015-021, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
    10. Yongok Choi & Giacomo Rondina & Todd B. Walker, 2023. "Information Aggregation Bias and Samuelson's Dictum," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 55(5), pages 1119-1145, August.
    11. Jonathan J Adams, 2021. "Firestorm: Multiplicity in Models with Full Information," Working Papers 001006, University of Florida, Department of Economics.
    12. Angeletos, G.-M. & Lian, C., 2016. "Incomplete Information in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 1065-1240, Elsevier.
    13. Hoffmann, Mathias & Hürtgen, Patrick, 2016. "Inflation expectations, disagreement, and monetary policy," Economics Letters, Elsevier, vol. 146(C), pages 59-63.
    14. George-Marios Angeletos & Chen Lian, 2016. "Incomplete Information in Macroeconomics: Accommodating Frictions in Coordination," NBER Working Papers 22297, National Bureau of Economic Research, Inc.
    15. Paul Levine & Joseph Pearlman & Stephen Wright & Bo Yang, 2019. "Information, VARs and DSGE Models," School of Economics Discussion Papers 1619, School of Economics, University of Surrey.
    16. Jonathan J Adams, 2019. "Macroeconomic Models with Incomplete Information and Endogenous Signals," Working Papers 001004, University of Florida, Department of Economics.
    17. Paul Levine & Joseph Pearlman & Alessio Volpicella & Bo Yang, 2022. "The Use and Mis-Use of SVARs for Validating DSGE Models," School of Economics Discussion Papers 0522, School of Economics, University of Surrey.
    18. Paul Levine & Joseph Pearlman & Stephen Wright & Bo Yang, 2023. "Imperfect Information and Hidden Dynamics," School of Economics Discussion Papers 1223, School of Economics, University of Surrey.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Angeletos, G.-M. & Lian, C., 2016. "Incomplete Information in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 1065-1240, Elsevier.
    2. George-Marios Angeletos & Chen Lian, 2016. "Incomplete Information in Macroeconomics: Accommodating Frictions in Coordination," NBER Working Papers 22297, National Bureau of Economic Research, Inc.
    3. Giacomo Rondina & Todd Walker, 2016. "Learning and Informational Stability of Dynamic REE with Incomplete Information," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 21, pages 147-159, July.
    4. Benhima, Kenza, 2019. "Booms and busts with dispersed information," Journal of Monetary Economics, Elsevier, vol. 107(C), pages 32-47.
    5. George-Marios Angeletos & Chen Lian, 2018. "Forward Guidance without Common Knowledge," American Economic Review, American Economic Association, vol. 108(9), pages 2477-2512, September.
    6. George-Marios Angeletos, 2018. "Frictional Coordination," Journal of the European Economic Association, European Economic Association, vol. 16(3), pages 563-603.
    7. Han, Zhao & Tan, Fei & Wu, Jieran, 2022. "Analytic policy function iteration," Journal of Economic Theory, Elsevier, vol. 200(C).
    8. Jonathan J Adams, 2019. "Macroeconomic Models with Incomplete Information and Endogenous Signals," Working Papers 001004, University of Florida, Department of Economics.
    9. Angeletos, George-Marios & La’O, Jennifer, 2009. "Incomplete information, higher-order beliefs and price inertia," Journal of Monetary Economics, Elsevier, vol. 56(S), pages 19-37.
    10. Huo, Zhen & Pedroni, Marcelo, 2023. "Dynamic information aggregation: Learning from the past," Journal of Monetary Economics, Elsevier, vol. 136(C), pages 107-124.
    11. Zhao Han & Xiaohan Ma & Ruoyun Mao, 2023. "The Role of Dispersed Information in Inflation and Inflation Expectations," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 48, pages 72-106, April.
    12. Walker, Todd B., 2007. "How equilibrium prices reveal information in a time series model with disparately informed, competitive traders," Journal of Economic Theory, Elsevier, vol. 137(1), pages 512-537, November.
    13. Mäkinen, Taneli & Ohl, Björn, 2015. "Information acquisition and learning from prices over the business cycle," Journal of Economic Theory, Elsevier, vol. 158(PB), pages 585-633.
    14. Guido Lorenzoni, 2009. "A Theory of Demand Shocks," American Economic Review, American Economic Association, vol. 99(5), pages 2050-2084, December.
    15. Venky Venkateswaran, 2011. "Heterogeneous Information and Labor Market Fluctuations," 2011 Meeting Papers 1292, Society for Economic Dynamics.
    16. Paul Levine & Joseph Pearlman & Stephen Wright & Bo Yang, 2023. "Imperfect Information and Hidden Dynamics," School of Economics Discussion Papers 1223, School of Economics, University of Surrey.
    17. Paul Levine & Joseph Pearlman & Stephen Wright & Bo Yang, 2019. "Information, VARs and DSGE Models," School of Economics Discussion Papers 1619, School of Economics, University of Surrey.
    18. Tan, Fei & Walker, Todd B., 2015. "Solving generalized multivariate linear rational expectations models," Journal of Economic Dynamics and Control, Elsevier, vol. 60(C), pages 95-111.
    19. Makarov, Igor & Rytchkov, Oleg, 2012. "Forecasting the forecasts of others: Implications for asset pricing," Journal of Economic Theory, Elsevier, vol. 147(3), pages 941-966.
    20. Philippe Bacchetta & Eric Van Wincoop, 2006. "Can Information Heterogeneity Explain the Exchange Rate Determination Puzzle?," American Economic Review, American Economic Association, vol. 96(3), pages 552-576, June.

    More about this item

    JEL classification:

    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • D84 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Expectations; Speculations
    • C62 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Existence and Stability Conditions of Equilibrium

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:red:sed017:141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christian Zimmermann (email available below). General contact details of provider: https://edirc.repec.org/data/sedddea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.