IDEAS home Printed from https://ideas.repec.org/p/rdg/emxxdp/em-dp2018-02.html
   My bibliography  Save this paper

Prediction Markets and Poll Releases: When Are Prices Most Informative?

Author

Listed:
  • Alasdair Brown

    (University of East Anglia)

  • James Reade

    (Department of Economics, University of Reading)

  • Leighton Vaughan Williams

    (Nottingham Business School)

Abstract

Prediction markets are a popular platform for eliciting incentivised crowd predictions. In this paper, we examine variation in the information contained in prediction market prices by studying Intrade prices on U.S. elections around the release of opinion polls. We find that poll releases stimulate an immediate uptick in trading activity. However, much of this activity involves relatively inexperienced traders and, as a result, price efficiency declines in the immediate aftermath of a poll release. It is not until more experienced traders enter the market in the following ours that price efficiency recovers. More generally, this suggests that information releases do not necessarily improve prediction market forecasts, but may instead attract noise traders who temporarily reduce price efficiency.

Suggested Citation

  • Alasdair Brown & James Reade & Leighton Vaughan Williams, 2018. "Prediction Markets and Poll Releases: When Are Prices Most Informative?," Economics Discussion Papers em-dp2018-02, Department of Economics, University of Reading.
  • Handle: RePEc:rdg:emxxdp:em-dp2018-02
    as

    Download full text from publisher

    File URL: http://www.reading.ac.uk/web/FILES/economics/emdp2018134.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. De Long, J Bradford, et al, 1990. "Positive Feedback Investment Strategies and Destabilizing Rational Speculation," Journal of Finance, American Finance Association, vol. 45(2), pages 379-395, June.
    2. Alasdair Brown & Dooruj Rambaccussing & J. James Reade & Giambattista Rossi, 2016. "Using Social Media to Identify Market Inefficiencies: Evidence from Twitter and Betfair," Dundee Discussion Papers in Economics 293, Economic Studies, University of Dundee.
    3. Karen Croxson & J. James Reade, 2014. "Information and Efficiency: Goal Arrival in Soccer Betting," Economic Journal, Royal Economic Society, vol. 124(575), pages 62-91, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tai, Chung-Ching & Lin, Hung-Wen & Chie, Bin-Tzong & Tung, Chen-Yuan, 2019. "Predicting the failures of prediction markets: A procedure of decision making using classification models," International Journal of Forecasting, Elsevier, vol. 35(1), pages 297-312.
    2. Brown, Alasdair & Reade, J. James & Vaughan Williams, Leighton, 2019. "When are prediction market prices most informative?," International Journal of Forecasting, Elsevier, vol. 35(1), pages 420-428.
    3. Dmitry Dagaev & Egor Stoyan, 2019. "Parimutuel Betting On The Esports Duels: Reverse Favourite-Longshot Bias And Its Determinants," HSE Working papers WP BRP 216/EC/2019, National Research University Higher School of Economics.
    4. Harrison Hong & Terence Lim & Jeremy C. Stein, 2000. "Bad News Travels Slowly: Size, Analyst Coverage, and the Profitability of Momentum Strategies," Journal of Finance, American Finance Association, vol. 55(1), pages 265-295, February.
    5. R. Andergassen, 2003. "Rational destabilising speculation and the riding of bubbles," Working Papers 475, Dipartimento Scienze Economiche, Universita' di Bologna.
    6. Wang, Xiao-Qing & Wu, Tong & Zhong, Huaming & Su, Chi-Wei, 2023. "Bubble behaviors in nickel price: What roles do geopolitical risk and speculation play?," Resources Policy, Elsevier, vol. 83(C).
    7. Carol Alexander & Anca Dimitriu, 2003. "Equity Indexing: Conitegration and Stock Price Dispersion: A Regime Switiching Approach to market Efficiency," ICMA Centre Discussion Papers in Finance icma-dp2003-02, Henley Business School, University of Reading.
    8. Yue Zhao & Difang Wan, 2018. "Institutional high frequency trading and price discovery: Evidence from an emerging commodity futures market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(2), pages 243-270, February.
    9. Adrian, Tobias, 2009. "Inference, arbitrage, and asset price volatility," Journal of Financial Intermediation, Elsevier, vol. 18(1), pages 49-64, January.
    10. Koutmos, Dimitrios, 2012. "An intertemporal capital asset pricing model with heterogeneous expectations," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 22(5), pages 1176-1187.
    11. Angelidis, Dimitrios & Koulakiotis Athanasios & Kiohos Apostolos, 2018. "Feedback Trading Strategies: The Case of Greece and Cyprus," South East European Journal of Economics and Business, Sciendo, vol. 13(1), pages 93-99, June.
    12. Lo, Andrew W & MacKinlay, A Craig, 1990. "When Are Contrarian Profits Due to Stock Market Overreaction?," The Review of Financial Studies, Society for Financial Studies, vol. 3(2), pages 175-205.
    13. Raphael Flepp & Oliver Merz & Egon Franck, 2024. "When the league table lies: Does outcome bias lead to informationally inefficient markets?," Economic Inquiry, Western Economic Association International, vol. 62(1), pages 414-429, January.
    14. Lee, Yi-Tsung & Lin, Ji-Chai & Liu, Yu-Jane, 1999. "Trading patterns of big versus small players in an emerging market: An empirical analysis," Journal of Banking & Finance, Elsevier, vol. 23(5), pages 701-725, May.
    15. Seungwook Bahng, 2003. "Do Psychological Barriers Exist in the Stock Price Indices? Evidence from Asia's Emerging Markets," International Area Studies Review, Center for International Area Studies, Hankuk University of Foreign Studies, vol. 6(1), pages 35-52, March.
    16. Romain Gauriot Author e-mail: romain.gauriot@nyu.edu & Lionel Page Author e-mail: lionel.page@uts.edu.au, 2021. "How Market Prices React to Information: Evidence from Binary Options Markets," Working Papers 20200058, New York University Abu Dhabi, Department of Social Science, revised Oct 2021.
    17. Giusti, G. & Noussair, C.N. & Voth, H-J., 2013. "Recreating the South Sea Bubble : Lessons from an Experiment in Financial History," Discussion Paper 2013-042, Tilburg University, Center for Economic Research.
    18. Tokic, Damir, 2011. "Rational destabilizing speculation, positive feedback trading, and the oil bubble of 2008," Energy Policy, Elsevier, vol. 39(4), pages 2051-2061, April.
    19. Barge-Gil, Andrés & García-Hiernaux, Alfredo, 2019. "Staking plans in sports betting under unknown true probabilities of the event," MPRA Paper 92196, University Library of Munich, Germany.
    20. Chen, Yu-Lun & Mo, Wan-Shin, 2023. "Determinants and dynamic interactions of trader positions in the gold futures market," Journal of Commodity Markets, Elsevier, vol. 31(C).

    More about this item

    Keywords

    prediction markets; opinion polls; price efficiency; information efficiency;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • D82 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Asymmetric and Private Information; Mechanism Design
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rdg:emxxdp:em-dp2018-02. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alexander Mihailov (email available below). General contact details of provider: https://edirc.repec.org/data/derdguk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.