IDEAS home Printed from https://ideas.repec.org/p/qed/wpaper/1259.html
   My bibliography  Save this paper

Asymptotics For The Conditional-sum-of-squares Estimator In Multivariate Fractional Time Series Models

Author

Listed:
  • Morten Ø. Nielsen

    (Queen's University and CREATES)

Abstract

This paper proves consistency and asymptotic normality for the conditional-sum-of-squares estimator, which is equivalent to the conditional maximum likelihood estimator, in multivariate fractional time series models. The model is parametric and quite general, and, in particular, encompasses the multivariate non-cointegrated fractional ARIMA model. The novelty of the consistency result, in particular, is that it applies to a multivariate model and to an arbitrarily large set of admissible parameter values, for which the objective function does not converge uniformly in probablity, thus making the proof much more challenging than usual. The neighborhood around the critical point where uniform convergence fails is handled using a truncation argument.

Suggested Citation

  • Morten Ø. Nielsen, 2011. "Asymptotics For The Conditional-sum-of-squares Estimator In Multivariate Fractional Time Series Models," Working Paper 1259, Economics Department, Queen's University.
  • Handle: RePEc:qed:wpaper:1259
    as

    Download full text from publisher

    File URL: https://www.econ.queensu.ca/sites/econ.queensu.ca/files/qed_wp_1259.pdf
    File Function: First version 2011
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Søren Johansen & Morten Ørregaard Nielsen, 2012. "Likelihood Inference for a Fractionally Cointegrated Vector Autoregressive Model," Econometrica, Econometric Society, vol. 80(6), pages 2667-2732, November.
    2. Nielsen, Morten Ørregaard, 2004. "Efficient Likelihood Inference In Nonstationary Univariate Models," Econometric Theory, Cambridge University Press, vol. 20(1), pages 116-146, February.
    3. Hosoya, Yuzo, 1996. "The quasi-likelihood approach to statistical inference on multiple time-series with long-range dependence," Journal of Econometrics, Elsevier, vol. 73(1), pages 217-236, July.
    4. Newey, Whitney K, 1991. "Uniform Convergence in Probability and Stochastic Equicontinuity," Econometrica, Econometric Society, vol. 59(4), pages 1161-1167, July.
    5. Johansen, Søren & Nielsen, Morten Ørregaard, 2010. "Likelihood inference for a nonstationary fractional autoregressive model," Journal of Econometrics, Elsevier, vol. 158(1), pages 51-66, September.
    6. Johansen, Søren & Ørregaard Nielsen, Morten, 2012. "A Necessary Moment Condition For The Fractional Functional Central Limit Theorem," Econometric Theory, Cambridge University Press, vol. 28(3), pages 671-679, June.
    7. Morten Ørregaard Nielsen & Per Houmann Frederiksen, 2005. "Finite Sample Comparison of Parametric, Semiparametric, and Wavelet Estimators of Fractional Integration," Econometric Reviews, Taylor & Francis Journals, vol. 24(4), pages 405-443.
    8. Peter M Robinson, 2006. "Conditional-Sum-of-Squares Estimation ofModels for Stationary Time Series with Long Memory," STICERD - Econometrics Paper Series 505, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    9. Marinucci, D. & Robinson, P. M., 2000. "Weak convergence of multivariate fractional processes," Stochastic Processes and their Applications, Elsevier, vol. 86(1), pages 103-120, March.
    10. Robinson, Peter, 2006. "Conditional-sum-of-squares estimation of models for stationary time series with long memory," LSE Research Online Documents on Economics 4536, London School of Economics and Political Science, LSE Library.
    11. Yuzo Hosoya, 2005. "Fractional Invariance Principle," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(3), pages 463-486, May.
    12. Tanaka, Katsuto, 1999. "The Nonstationary Fractional Unit Root," Econometric Theory, Cambridge University Press, vol. 15(4), pages 549-582, August.
    13. Shao, Xiaofeng, 2010. "Nonstationarity-Extended Whittle Estimation," Econometric Theory, Cambridge University Press, vol. 26(4), pages 1060-1087, August.
    14. repec:dau:papers:123456789/7622 is not listed on IDEAS
    15. Lieberman, Offer & Rosemarin, Roy & Rousseau, Judith, 2012. "Asymptotic Theory For Maximum Likelihood Estimation Of The Memory Parameter In Stationary Gaussian Processes," Econometric Theory, Cambridge University Press, vol. 28(2), pages 457-470, April.
    16. Robinson, Peter M. & Velasco, Carlos, 2000. "Whittle pseudo-maximum likelihood estimation for nonstationary time series," LSE Research Online Documents on Economics 2273, London School of Economics and Political Science, LSE Library.
    17. Peter M Robinson & Carlos Velasco, 2000. "Whittle Pseudo-Maximum Likelihood Estimation for Nonstationary Time Series - (Now published in Journal of the American Statistical Association, 95, (2000), pp.1229-1243.)," STICERD - Econometrics Paper Series 391, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yunus Emre Ergemen, 2016. "System Estimation of Panel Data Models under Long-Range Dependence," CREATES Research Papers 2016-02, Department of Economics and Business Economics, Aarhus University.
    2. Cavaliere, Giuseppe & Nielsen, Morten Ørregaard & Taylor, A.M. Robert, 2015. "Bootstrap score tests for fractional integration in heteroskedastic ARFIMA models, with an application to price dynamics in commodity spot and futures markets," Journal of Econometrics, Elsevier, vol. 187(2), pages 557-579.
    3. Tobias Hartl & Rolf Tschernig & Enzo Weber, 2020. "Fractional trends and cycles in macroeconomic time series," Papers 2005.05266, arXiv.org, revised May 2020.
    4. Andersen, Torben G. & Varneskov, Rasmus T., 2022. "Testing for parameter instability and structural change in persistent predictive regressions," Journal of Econometrics, Elsevier, vol. 231(2), pages 361-386.
    5. Tobias Hartl & Rolf Tschernig & Enzo Weber, 2020. "Fractional trends in unobserved components models," Papers 2005.03988, arXiv.org, revised May 2020.
    6. Cavaliere, Giuseppe & Nielsen, Morten Ørregaard & Taylor, A.M. Robert, 2017. "Quasi-maximum likelihood estimation and bootstrap inference in fractional time series models with heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 198(1), pages 165-188.
    7. Johansen, Søren & Nielsen, Morten Ørregaard, 2016. "The Role Of Initial Values In Conditional Sum-Of-Squares Estimation Of Nonstationary Fractional Time Series Models," Econometric Theory, Cambridge University Press, vol. 32(5), pages 1095-1139, October.
    8. Søren Johansen & Morten Ørregaard Nielsen, 2012. "The role of initial values in nonstationary fractional time series models," CREATES Research Papers 2012-47, Department of Economics and Business Economics, Aarhus University.
    9. Javier Hualde & Morten {O}rregaard Nielsen, 2022. "Fractional integration and cointegration," Papers 2211.10235, arXiv.org.
    10. Yunus Emre Ergemen & Carlos Velasco, 2019. "Persistence Heterogeneity Testing in Panels with Interactive Fixed Effects," Journal of Time Series Analysis, Wiley Blackwell, vol. 40(4), pages 573-589, July.
    11. Javier Hualde & Morten Ørregaard Nielsen, 2022. "Truncated sum-of-squares estimation of fractional time series models with generalized power law trend," CREATES Research Papers 2022-07, Department of Economics and Business Economics, Aarhus University.
    12. Torben G. Andersen & Rasmus T. Varneskov, 2018. "Consistent Inference for Predictive Regressions in Persistent VAR Economies," CREATES Research Papers 2018-09, Department of Economics and Business Economics, Aarhus University.
    13. Mustafa R. K{i}l{i}nc{c} & Michael Massmann, 2024. "The modified conditional sum-of-squares estimator for fractionally integrated models," Papers 2404.12882, arXiv.org.
    14. Tobias Hartl, 2021. "Monitoring the pandemic: A fractional filter for the COVID-19 contact rate," Papers 2102.10067, arXiv.org.
    15. Ergemen, Yunus Emre, 2023. "Parametric estimation of long memory in factor models," Journal of Econometrics, Elsevier, vol. 235(2), pages 1483-1499.
    16. Rasmus T. Varneskov & Pierre Perron, 2018. "Combining long memory and level shifts in modelling and forecasting the volatility of asset returns," Quantitative Finance, Taylor & Francis Journals, vol. 18(3), pages 371-393, March.
    17. Ergemen, Yunus Emre & Velasco, Carlos, 2017. "Estimation of fractionally integrated panels with fixed effects and cross-section dependence," Journal of Econometrics, Elsevier, vol. 196(2), pages 248-258.
    18. Uwe Hassler & Marc-Oliver Pohle, 2019. "Forecasting under Long Memory and Nonstationarity," Papers 1910.08202, arXiv.org.
    19. Yunus Emre Ergemen, 2022. "Parametric Estimation of Long Memory in Factor Models," CREATES Research Papers 2022-10, Department of Economics and Business Economics, Aarhus University.
    20. Hartl, Tobias, 2021. "Monitoring the pandemic: A fractional filter for the COVID-19 contact rate," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242380, Verein für Socialpolitik / German Economic Association.
    21. Morten Ørregaard Nielsen & Sergei S. Shibaev, 2015. "Forecasting daily political opinion polls using the fractionally cointegrated VAR model," Working Paper 1340, Economics Department, Queen's University.
    22. Yacouba Boubacar Maïnassara & Youssef Esstafa & Bruno Saussereau, 2021. "Estimating FARIMA models with uncorrelated but non-independent error terms," Statistical Inference for Stochastic Processes, Springer, vol. 24(3), pages 549-608, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javier Haulde & Morten Ørregaard Nielsen, 2022. "Fractional integration and cointegration," CREATES Research Papers 2022-02, Department of Economics and Business Economics, Aarhus University.
    2. Cavaliere, Giuseppe & Nielsen, Morten Ørregaard & Taylor, A.M. Robert, 2017. "Quasi-maximum likelihood estimation and bootstrap inference in fractional time series models with heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 198(1), pages 165-188.
    3. Martin, Gael M. & Nadarajah, K. & Poskitt, D.S., 2020. "Issues in the estimation of mis-specified models of fractionally integrated processes," Journal of Econometrics, Elsevier, vol. 215(2), pages 559-573.
    4. Cavaliere, Giuseppe & Nielsen, Morten Ørregaard & Taylor, A.M. Robert, 2015. "Bootstrap score tests for fractional integration in heteroskedastic ARFIMA models, with an application to price dynamics in commodity spot and futures markets," Journal of Econometrics, Elsevier, vol. 187(2), pages 557-579.
    5. Uwe Hassler & Marc-Oliver Pohle, 2019. "Forecasting under Long Memory and Nonstationarity," Papers 1910.08202, arXiv.org.
    6. Yuliya Lovcha & Alejandro Perez-Laborda, 2017. "Structural shocks and dynamic elasticities in a long memory model of the US gasoline retail market," Empirical Economics, Springer, vol. 53(2), pages 405-422, September.
    7. de Truchis, Gilles, 2013. "Approximate Whittle analysis of fractional cointegration and the stock market synchronization issue," Economic Modelling, Elsevier, vol. 34(C), pages 98-105.
    8. Søren Johansen & Morten Ørregaard Nielsen, 2018. "Testing the CVAR in the Fractional CVAR Model," Journal of Time Series Analysis, Wiley Blackwell, vol. 39(6), pages 836-849, November.
    9. Johansen, Søren & Nielsen, Morten Ørregaard, 2010. "Likelihood inference for a nonstationary fractional autoregressive model," Journal of Econometrics, Elsevier, vol. 158(1), pages 51-66, September.
    10. Man Wang & Ngai Hang Chan, 2016. "Testing for the Equality of Integration Orders of Multiple Series," Econometrics, MDPI, vol. 4(4), pages 1-10, December.
    11. Tobias Hartl & Rolf Tschernig & Enzo Weber, 2020. "Fractional trends in unobserved components models," Papers 2005.03988, arXiv.org, revised May 2020.
    12. Hartl, Tobias, 2021. "Monitoring the pandemic: A fractional filter for the COVID-19 contact rate," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242380, Verein für Socialpolitik / German Economic Association.
    13. Tobias Hartl, 2021. "Monitoring the pandemic: A fractional filter for the COVID-19 contact rate," Papers 2102.10067, arXiv.org.
    14. Robinson, P.M. & Iacone, F., 2005. "Cointegration in fractional systems with deterministic trends," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 263-298.
    15. Laura Mayoral, 2007. "Minimum distance estimation of stationary and non-stationary ARFIMA processes," Econometrics Journal, Royal Economic Society, vol. 10(1), pages 124-148, March.
    16. Hongchang Hu & Weifu Hu & Xinxin Yu, 2021. "Pseudo-maximum likelihood estimators in linear regression models with fractional time series," Statistical Papers, Springer, vol. 62(2), pages 639-659, April.
    17. Gil-Alana, Luis A. & Yaya, OlaOluwa S. & Akinsomi, Omokolade & Coskun, Yener, 2020. "How do stocks in BRICS co-move with real estate stocks?," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 93-101.
    18. Søren Johansen & Morten Ørregaard Nielsen, 2019. "Nonstationary Cointegration in the Fractionally Cointegrated VAR Model," Journal of Time Series Analysis, Wiley Blackwell, vol. 40(4), pages 519-543, July.
    19. Peter C. B. Phillips, 2023. "Discrete Fourier Transforms of Fractional Processes with Econometric Applications," Advances in Econometrics, in: Essays in Honor of Joon Y. Park: Econometric Theory, volume 45, pages 3-71, Emerald Group Publishing Limited.
    20. Mirko Abbritti & Luis A. Gil-Alana & Yuliya Lovcha & Antonio Moreno, 2016. "Term Structure Persistence," Journal of Financial Econometrics, Oxford University Press, vol. 14(2), pages 331-352.

    More about this item

    Keywords

    Asymptotic normality; conditional-sum-of-squares estimator; consistency; fractional integration; fractional time series; likelihood inference; long memory; nonstationary; uniform convergence; uniform convergence;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:qed:wpaper:1259. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mark Babcock (email available below). General contact details of provider: https://edirc.repec.org/data/qedquca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.