IDEAS home Printed from https://ideas.repec.org/p/pre/wpaper/202157.html
   My bibliography  Save this paper

Firm-level Business Uncertainty and the Predictability of the Aggregate U.S. Stock Market Volatility during the COVID-19 Pandemic

Author

Listed:
  • Riza Demirer

    (Department of Economics and Finance, Southern Illinois University Edwardsville, Edwardsville, IL 62026- 1102, USA)

  • Rangan Gupta

    (Department of Economics, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa)

  • Afees A. Salisu

    (Centre for Econometric & Allied Research, University of Ibadan, Ibadan, Nigeria; Department of Economics, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa)

  • Renee van Eyden

    (Department of Economics, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa)

Abstract

In this paper, we analyze the predictive role of firm-level business expectations and uncertainties derived from a panel survey of U.S. 1,750 business executives from 50 states for the realized variance (sum of daily squared log-returns over a month) of the S&P500 over the monthly period of September, 2016 to July, 2021. Unlike standard models, our predictive framework adopts a time-varying approach due to the existence of multiple structural breaks in the relationship between volatility and the predictors in the model, which in turn leads to statistically insignificant causal effects in a constant parameter set-up. Our time-varying results reveal the predictive power of firm-level business uncertainty is concentrated during the early part of the sample associated with the U.S.-China trade war, and towards the end of our data coverage in the wake of the outbreak of the COVID-19 pandemic. Since, in-sample predictability does not guarantee the same over an out-sample, we also conducted a full-fledged forecasting exercise to show that subjective expectations and uncertainties associated with sales growth rates and employment produces statistically significant predictability gains over January, 2020 to July, 2021, given an in-sample of September, 2016 to December, 2019. Our results suggest that subjective measures of business uncertainty at the firm-level indeed captures predictive information regarding aggregate stock market uncertainty which has important implications for investors and economic projections at the policy level.

Suggested Citation

  • Riza Demirer & Rangan Gupta & Afees A. Salisu & Renee van Eyden, 2021. "Firm-level Business Uncertainty and the Predictability of the Aggregate U.S. Stock Market Volatility during the COVID-19 Pandemic," Working Papers 202157, University of Pretoria, Department of Economics.
  • Handle: RePEc:pre:wpaper:202157
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Drost, Feike C & Nijman, Theo E, 1993. "Temporal Aggregation of GARCH Processes," Econometrica, Econometric Society, vol. 61(4), pages 909-927, July.
    2. Nasr, Adnen Ben & Lux, Thomas & Ajmi, Ahdi Noomen & Gupta, Rangan, 2016. "Forecasting the volatility of the Dow Jones Islamic Stock Market Index: Long memory vs. regime switching," International Review of Economics & Finance, Elsevier, vol. 45(C), pages 559-571.
    3. John Y. Campbell & Martin Lettau & Burton G. Malkiel & Yexiao Xu, 2001. "Have Individual Stocks Become More Volatile? An Empirical Exploration of Idiosyncratic Risk," Journal of Finance, American Finance Association, vol. 56(1), pages 1-43, February.
    4. Diego A. Comin & Thomas Philippon, 2006. "The Rise in Firm-Level Volatility: Causes and Consequences," NBER Chapters, in: NBER Macroeconomics Annual 2005, Volume 20, pages 167-228, National Bureau of Economic Research, Inc.
    5. Drost, Feike C & Nijman, Theo E, 1993. "Temporal Aggregation of GARCH Processes," Econometrica, Econometric Society, vol. 61(4), pages 909-927, July.
    6. Soosung Hwang & Pedro L. Valls Pereira, 2006. "Small sample properties of GARCH estimates and persistence," The European Journal of Finance, Taylor & Francis Journals, vol. 12(6-7), pages 473-494.
    7. John Y. Campbell, 2008. "Viewpoint: Estimating the equity premium," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 41(1), pages 1-21, February.
    8. Gupta, Rangan & Sheng, Xin & Balcilar, Mehmet & Ji, Qiang, 2021. "Time-varying impact of pandemics on global output growth," Finance Research Letters, Elsevier, vol. 41(C).
    9. Shiller, Robert J, 1981. "The Use of Volatility Measures in Assessing Market Efficiency," Journal of Finance, American Finance Association, vol. 36(2), pages 291-304, May.
    10. Shiller, Robert J, 1981. "Do Stock Prices Move Too Much to be Justified by Subsequent Changes in Dividends?," American Economic Review, American Economic Association, vol. 71(3), pages 421-436, June.
    11. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    12. Altig, David & Barrero, Jose Maria & Bloom, Nicholas & Davis, Steven J. & Meyer, Brent & Parker, Nicholas, 2022. "Surveying business uncertainty," Journal of Econometrics, Elsevier, vol. 231(1), pages 282-303.
    13. Mumtaz, Haroon & Theodoridis, Konstantinos, 2020. "Dynamic effects of monetary policy shocks on macroeconomic volatility," Journal of Monetary Economics, Elsevier, vol. 114(C), pages 262-282.
    14. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    15. Diego Comin & Sunil Mulani, 2006. "Diverging Trends in Aggregate and Firm Volatility," The Review of Economics and Statistics, MIT Press, vol. 88(2), pages 374-383, May.
    16. Michael McAleer & Marcelo Medeiros, 2008. "Realized Volatility: A Review," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 10-45.
    17. Sayar Karmakar & Stefan Richter & Wei Biao Wu, 2020. "Simultaneous inference for time-varying models," Papers 2011.13157, arXiv.org, revised Mar 2021.
    18. Borio, Claudio & Zhu, Haibin, 2012. "Capital regulation, risk-taking and monetary policy: A missing link in the transmission mechanism?," Journal of Financial Stability, Elsevier, vol. 8(4), pages 236-251.
    19. McCracken, Michael W., 2007. "Asymptotics for out of sample tests of Granger causality," Journal of Econometrics, Elsevier, vol. 140(2), pages 719-752, October.
    20. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    21. Merton, Robert C., 1980. "On estimating the expected return on the market : An exploratory investigation," Journal of Financial Economics, Elsevier, vol. 8(4), pages 323-361, December.
    22. Raghuram G. Rajan, 2006. "Has Finance Made the World Riskier?," European Financial Management, European Financial Management Association, vol. 12(4), pages 499-533, September.
    23. Matthew W Clance & Riza Demirer & Rangan Gupta & Clement Kweku Kyei, 2020. "Predicting firm-level volatility in the United States: the role of monetary policy uncertainty," Economics and Business Letters, Oviedo University Press, vol. 9(3), pages 167-177.
    24. Afees A. Salisu & Rangan Gupta & Ahamuefula E. Ogbonna, 2022. "A moving average heterogeneous autoregressive model for forecasting the realized volatility of the US stock market: Evidence from over a century of data," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 384-400, January.
    25. Gupta, Rangan & Ma, Jun & Risse, Marian & Wohar, Mark E., 2018. "Common business cycles and volatilities in US states and MSAs: The role of economic uncertainty," Journal of Macroeconomics, Elsevier, vol. 57(C), pages 317-337.
    26. Tobias Adrian & Hyun Song Shin, 2008. "Liquidity, monetary policy, and financial cycles," Current Issues in Economics and Finance, Federal Reserve Bank of New York, vol. 14(Jan).
    27. John Y. Campbell, 2007. "Estimating the Equity Premium," NBER Working Papers 13423, National Bureau of Economic Research, Inc.
    28. Tobias Adrian & Hyun Song Shin, 2008. "Liquidity and financial cycles," BIS Working Papers 256, Bank for International Settlements.
    29. Barbara Rossi & Yiru Wang, 2019. "VAR-Based Granger-Causality Test in the Presence of Instabilities," Working Papers 1083, Barcelona School of Economics.
    30. Sydney C. Ludvigson & Sai Ma & Serena Ng, 2021. "Uncertainty and Business Cycles: Exogenous Impulse or Endogenous Response?," American Economic Journal: Macroeconomics, American Economic Association, vol. 13(4), pages 369-410, October.
    31. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
    32. Sayar Karmakar & Arkaprava Roy, 2020. "Bayesian modelling of time-varying conditional heteroscedasticity," Papers 2009.06007, arXiv.org, revised Mar 2021.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthew W Clance & Riza Demirer & Rangan Gupta & Clement Kweku Kyei, 2020. "Predicting firm-level volatility in the United States: the role of monetary policy uncertainty," Economics and Business Letters, Oviedo University Press, vol. 9(3), pages 167-177.
    2. Salisu, Afees A. & Gupta, Rangan & Karmakar, Sayar & Das, Sonali, 2022. "Forecasting output growth of advanced economies over eight centuries: The role of gold market volatility as a proxy of global uncertainty," Resources Policy, Elsevier, vol. 75(C).
    3. Rangan Gupta & Yuvana Jaichand & Christian Pierdzioch & Reneé van Eyden, 2023. "Realized Stock-Market Volatility of the United States and the Presidential Approval Rating," Mathematics, MDPI, vol. 11(13), pages 1-27, July.
    4. Rangan Gupta & Jacobus Nel & Christian Pierdzioch, 2023. "Investor Confidence and Forecastability of US Stock Market Realized Volatility: Evidence from Machine Learning," Journal of Behavioral Finance, Taylor & Francis Journals, vol. 24(1), pages 111-122, January.
    5. Ruipeng Liu & Rangan Gupta & Elie Bouri, 2021. "Conventional and Unconventional Monetary Policy Rate Uncertainty and Stock Market Volatility: A Forecasting Perspective," Working Papers 202178, University of Pretoria, Department of Economics.
    6. Gupta, Rangan & Ji, Qiang & Pierdzioch, Christian & Plakandaras, Vasilios, 2023. "Forecasting the conditional distribution of realized volatility of oil price returns: The role of skewness over 1859 to 2023," Finance Research Letters, Elsevier, vol. 58(PC).
    7. Long H. Vo, 2017. "Estimating Financial Volatility with High-Frequency Returns," Journal of Finance and Economics Research, Geist Science, Iqra University, Faculty of Business Administration, vol. 2(2), pages 84-114, October.
    8. Salisu, Afees A. & Ogbonna, Ahamuefula E. & Gupta, Rangan & Bouri, Elie, 2024. "Energy-related uncertainty and international stock market volatility," The Quarterly Review of Economics and Finance, Elsevier, vol. 95(C), pages 280-293.
    9. Ruipeng Liu & Rangan Gupta, 2022. "Investors’ Uncertainty and Forecasting Stock Market Volatility," Journal of Behavioral Finance, Taylor & Francis Journals, vol. 23(3), pages 327-337, July.
    10. Demirer, Riza & Gupta, Rangan & Pierdzioch, Christian & Shahzad, Syed Jawad Hussain, 2020. "The predictive power of oil price shocks on realized volatility of oil: A note," Resources Policy, Elsevier, vol. 69(C).
    11. Rangan Gupta & Christian Pierdzioch & Wing-Keung Wong, 2021. "A Note on Forecasting the Historical Realized Variance of Oil-Price Movements: The Role of Gold-to-Silver and Gold-to-Platinum Price Ratios," Energies, MDPI, vol. 14(20), pages 1-12, October.
    12. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    13. Hossein Hassani & Mohammad Reza Yeganegi & Rangan Gupta & Riza Demirer, 2022. "Forecasting stock market (realized) volatility in the United Kingdom: Is there a role of inequality?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 2146-2152, April.
    14. Hossein Hassani & Mohammad Reza Yeganegi & Rangan Gupta & Riza Demirer, 2018. "Forecasting Stock Market (Realized) Volatility in the United Kingdom: Is There a Role for Economic Inequality?," Working Papers 201880, University of Pretoria, Department of Economics.
    15. Subbotin, Alexandre, 2009. "Volatility Models: from Conditional Heteroscedasticity to Cascades at Multiple Horizons," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 15(3), pages 94-138.
    16. Bouri, Elie & Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2021. "Forecasting power of infectious diseases-related uncertainty for gold realized variance," Finance Research Letters, Elsevier, vol. 42(C).
    17. Bonato, Matteo & Cepni, Oguzhan & Gupta, Rangan & Pierdzioch, Christian, 2023. "Climate risks and state-level stock market realized volatility," Journal of Financial Markets, Elsevier, vol. 66(C).
    18. Matteo Bonato & Oguzhan Cepni & Rangan Gupta & Christian Pierdzioch, 2024. "Business applications and state‐level stock market realized volatility: A forecasting experiment," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 456-472, March.
    19. Plakandaras, Vasilios & Gupta, Rangan & Balcilar, Mehmet & Ji, Qiang, 2022. "Evolving United States stock market volatility: The role of conventional and unconventional monetary policies," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).
    20. Elie Bouri & Riza Demirer & Rangan Gupta & Xiaojin Sun, 2020. "The predictability of stock market volatility in emerging economies: Relative roles of local, regional, and global business cycles," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(6), pages 957-965, September.

    More about this item

    Keywords

    S&P500 Realized Variance; Firm-Level Expectations and Uncertainties; Time-Varying Predictability;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • D80 - Microeconomics - - Information, Knowledge, and Uncertainty - - - General
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pre:wpaper:202157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Rangan Gupta (email available below). General contact details of provider: https://edirc.repec.org/data/decupza.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.