Forecasting (downside and upside) realized exchange-rate volatility: Is there a role for realized skewness and kurtosis?
Author
Abstract
Suggested Citation
DOI: 10.1016/j.physa.2019.121867
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Cui, Jinxin & Maghyereh, Aktham, 2023. "Time-frequency dependence and connectedness among global oil markets: Fresh evidence from higher-order moment perspective," Journal of Commodity Markets, Elsevier, vol. 30(C).
- Bonato, Matteo & Cepni, Oguzhan & Gupta, Rangan & Pierdzioch, Christian, 2023.
"Climate risks and realized volatility of major commodity currency exchange rates,"
Journal of Financial Markets, Elsevier, vol. 62(C).
- Matteo Bonato & Oguzhan Cepni & Rangan Gupta & Christian Pierdzioch, 2022. "Climate Risks and Realized Volatility of Major Commodity Currency Exchange Rates," Working Papers 202210, University of Pretoria, Department of Economics.
- Chen, Yan & Qiao, Gaoxiu & Zhang, Feipeng, 2022. "Oil price volatility forecasting: Threshold effect from stock market volatility," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
- Shahzad, Syed Jawad Hussain & Naeem, Muhammad Abubakr & Peng, Zhe & Bouri, Elie, 2021. "Asymmetric volatility spillover among Chinese sectors during COVID-19," International Review of Financial Analysis, Elsevier, vol. 75(C).
- Maki, Daiki, 2024. "Forecasting downside and upside realized volatility: The role of asymmetric information," The Journal of Economic Asymmetries, Elsevier, vol. 29(C).
- Luo, Jiawen & Demirer, Riza & Gupta, Rangan & Ji, Qiang, 2022.
"Forecasting oil and gold volatilities with sentiment indicators under structural breaks,"
Energy Economics, Elsevier, vol. 105(C).
- Jiawen Luo & Riza Demirer & Rangan Gupta & Qiang Ji, 2021. "Forecasting Oil and Gold Volatilities with Sentiment Indicators Under Structural Breaks," Working Papers 202130, University of Pretoria, Department of Economics.
- Zhang, Hongwei & Zhao, Xinyi & Gao, Wang & Niu, Zibo, 2023. "The role of higher moments in predicting China's oil futures volatility: Evidence from machine learning models," Journal of Commodity Markets, Elsevier, vol. 32(C).
- Gkillas, Konstantinos & Bouri, Elie & Gupta, Rangan & Roubaud, David, 2022.
"Spillovers in Higher-Order Moments of Crude Oil, Gold, and Bitcoin,"
The Quarterly Review of Economics and Finance, Elsevier, vol. 84(C), pages 398-406.
- Konstantinos Gkillas & Elie Bouri & Rangan Gupta & David Roubaud, 2020. "Spillovers in Higher-Order Moments of Crude Oil, Gold, and Bitcoin," Working Papers 202068, University of Pretoria, Department of Economics.
- Matteo Bonato & Oguzhan Cepni & Rangan Gupta & Christian Pierdzioch, 2022.
"Forecasting realized volatility of international REITs: The role of realized skewness and realized kurtosis,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 303-315, March.
- Matteo Bonato & Oguzhan Cepni & Rangan Gupta & Christian Pierdzioch, 2021. "Forecasting Realized Volatility of International REITs: The Role of Realized Skewness and Realized Kurtosis," Working Papers 202114, University of Pretoria, Department of Economics.
- Waqas Hanif & Hee-Un Ko & Linh Pham & Sang Hoon Kang, 2023. "Dynamic connectedness and network in the high moments of cryptocurrency, stock, and commodity markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-40, December.
- Cui, Jinxin & Maghyereh, Aktham, 2023. "Higher-order moment risk connectedness and optimal investment strategies between international oil and commodity futures markets: Insights from the COVID-19 pandemic and Russia-Ukraine conflict," International Review of Financial Analysis, Elsevier, vol. 86(C).
- Gao, Shang & Zhang, Zhikai & Wang, Yudong & Zhang, Yaojie, 2023. "Forecasting stock market volatility: The sum of the parts is more than the whole," Finance Research Letters, Elsevier, vol. 55(PA).
- Liu, Yiye & Han, Liyan & Wu, You, 2022. "Can skewness predict CNY-CNH spread?," Finance Research Letters, Elsevier, vol. 46(PB).
More about this item
Keywords
Exchange rates; Realized volatility; Forecasting;All these keywords.
JEL classification:
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- F31 - International Economics - - International Finance - - - Foreign Exchange
- F37 - International Economics - - International Finance - - - International Finance Forecasting and Simulation: Models and Applications
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:532:y:2019:i:c:s0378437119310957. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.