IDEAS home Printed from https://ideas.repec.org/p/lec/leecon/17-15.html
   My bibliography  Save this paper

Testing a parametric transformation model versus a nonparametric alternative

Author

Listed:
  • Arkadiusz Szydlowski

Abstract

Despite an abundance of semiparametric estimators of the transformation model, no procedure has been proposed yet to test the hypothesis that the transformation function belongs to a finite-dimensional parametric family against a nonparametric alternative. In this paper we introduce a bootstrap test based on integrated squared distance between a nonparametric estimator and a parametric null. As a special case, our procedure can be used to test the parametric specification of the integrated baseline hazard in a semiparametric mixed proportional hazard (MPH) model. We investigate the finite sample performance of our test in a Monte Carlo study. Finally, we apply the proposed test to Kennan’s strike durations data.

Suggested Citation

  • Arkadiusz Szydlowski, 2017. "Testing a parametric transformation model versus a nonparametric alternative," Discussion Papers in Economics 17/15, Division of Economics, School of Business, University of Leicester.
  • Handle: RePEc:lec:leecon:17/15
    as

    Download full text from publisher

    File URL: https://www.le.ac.uk/economics/research/RePEc/lec/leecon/dp17-15.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Heckman, James & Singer, Burton, 1984. "A Method for Minimizing the Impact of Distributional Assumptions in Econometric Models for Duration Data," Econometrica, Econometric Society, vol. 52(2), pages 271-320, March.
    2. Gorgens, Tue & Horowitz, Joel L., 1999. "Semiparametric estimation of a censored regression model with an unknown transformation of the dependent variable," Journal of Econometrics, Elsevier, vol. 90(2), pages 155-191, June.
    3. Jochmans, Koen, 2012. "The variance of a rank estimator of transformation models," Economics Letters, Elsevier, vol. 117(1), pages 168-169.
    4. Richard Blundell & Joel L. Horowitz, 2007. "A Non-Parametric Test of Exogeneity," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 74(4), pages 1035-1058.
    5. Han, Aaron K., 1987. "A non-parametric analysis of transformations," Journal of Econometrics, Elsevier, vol. 35(2-3), pages 191-209, July.
    6. Roger W. Klein & Robert P. Sherman, 2002. "Shift Restrictions and Semiparametric Estimation in Ordered Response Models," Econometrica, Econometric Society, vol. 70(2), pages 663-691, March.
    7. Horowitz, Joel L, 1996. "Semiparametric Estimation of a Regression Model with an Unknown Transformation of the Dependent Variable," Econometrica, Econometric Society, vol. 64(1), pages 103-137, January.
    8. Foster A. M. & Tian L. & Wei L. J., 2001. "Estimation for the Box-Cox Transformation Model Without Assuming Parametric Error Distribution," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1097-1101, September.
    9. Joel L. Horowitz, 1999. "Semiparametric Estimation of a Proportional Hazard Model with Unobserved Heterogeneity," Econometrica, Econometric Society, vol. 67(5), pages 1001-1028, September.
    10. Subbotin, Viktor, 2007. "Asymptotic and bootstrap properties of rank regressions," MPRA Paper 9030, University Library of Munich, Germany, revised 20 Mar 2008.
    11. Joel L. Horowitz, 2006. "Testing a Parametric Model Against a Nonparametric Alternative with Identification Through Instrumental Variables," Econometrica, Econometric Society, vol. 74(2), pages 521-538, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Horowitz, Joel L., 2004. "Semiparametric models," Papers 2004,17, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
    2. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    3. Hausman, Jerry A. & Woutersen, Tiemen, 2014. "Estimating a semi-parametric duration model without specifying heterogeneity," Journal of Econometrics, Elsevier, vol. 178(P1), pages 114-131.
    4. Ruixuan Liu, 2020. "A competing risks model with time‐varying heterogeneity and simultaneous failure," Quantitative Economics, Econometric Society, vol. 11(2), pages 535-577, May.
    5. Bijwaard Govert E. & Ridder Geert & Woutersen Tiemen, 2013. "A Simple GMM Estimator for the Semiparametric Mixed Proportional Hazard Model," Journal of Econometric Methods, De Gruyter, vol. 2(1), pages 1-23, July.
    6. Van den Berg, Gerard J., 2001. "Duration models: specification, identification and multiple durations," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 55, pages 3381-3460, Elsevier.
    7. Bhattacharjee, Arnab, 2009. "Testing for Proportional Hazards with Unrestricted Univariate Unobserved Heterogeneity," SIRE Discussion Papers 2009-22, Scottish Institute for Research in Economics (SIRE).
    8. Jerry Hausman & Tiemen Woutersen, 2014. "Estimating the Derivative Function and Counterfactuals in Duration Models with Heterogeneity," Econometric Reviews, Taylor & Francis Journals, vol. 33(5-6), pages 472-496, August.
    9. Sokbae Lee, 2006. "Identification of a competing risks model with unknown transformations of latent failure times," Biometrika, Biometrika Trust, vol. 93(4), pages 996-1002, December.
    10. Chiappori, Pierre-Andre & Komunjer, Ivana, 2008. "Correct Specification and Identification of Nonparametric Transformation Models," University of California at San Diego, Economics Working Paper Series qt4v12m2rg, Department of Economics, UC San Diego.
    11. Bonev, Petyo, 2020. "Nonparametric identification in nonseparable duration models with unobserved heterogeneity," Economics Working Paper Series 2005, University of St. Gallen, School of Economics and Political Science.
    12. Gorgens, Tue & Horowitz, Joel L., 1999. "Semiparametric estimation of a censored regression model with an unknown transformation of the dependent variable," Journal of Econometrics, Elsevier, vol. 90(2), pages 155-191, June.
    13. Gorgens, T., 1999. "Semiparametric Estimation of Single-Index Transition Intensities," Papers 99-25, Carleton - School of Public Administration.
    14. Irene Botosaru & Chris Muris, 2017. "Binarization for panel models with fixed effects," CeMMAP working papers 31/17, Institute for Fiscal Studies.
    15. Coppejans, Mark, 2001. "Estimation of the binary response model using a mixture of distributions estimator (MOD)," Journal of Econometrics, Elsevier, vol. 102(2), pages 231-269, June.
    16. Vanhems, Anne & Van Keilegom, Ingrid, 2011. "Semiparametric transformation model with endogeneity: a control function approach," LIDAM Discussion Papers ISBA 2011011, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    17. Chiappori, Pierre-André & Komunjer, Ivana & Kristensen, Dennis, 2015. "Nonparametric identification and estimation of transformation models," Journal of Econometrics, Elsevier, vol. 188(1), pages 22-39.
    18. Hsieh Fushing, 2012. "Semiparametric efficient inferences for lifetime regression model with time-dependent covariates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(1), pages 1-25, February.
    19. Tan, Xin Lu, 2019. "Optimal estimation of slope vector in high-dimensional linear transformation models," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 179-204.
    20. Frédérique Fève & Jean-Pierre Florens, 2010. "The practice of non-parametric estimation by solving inverse problems: the example of transformation models," Econometrics Journal, Royal Economic Society, vol. 13(3), pages 1-27, October.

    More about this item

    Keywords

    Specification testing; Transformation model; Duration model; Bootstrap; Rank estimation;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C41 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Duration Analysis; Optimal Timing Strategies

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:lec:leecon:17/15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Abbie Sleath (email available below). General contact details of provider: https://edirc.repec.org/data/deleiuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.