IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/86785.html
   My bibliography  Save this paper

Nonparametric identification of static multinomial choice models

Author

Listed:
  • Otero, Karina V.

Abstract

This paper proposes a new nonparametric identification strategy for static multiple choice models with random heterogeneity in unobservables. The strategy relies on functional properties of the sub-utilities and the distribution of the unobservables, a known payoff function for the “outside option” and exclusion restrictions for all but one alternative. This new strategy does not transform the multiple choice model into a set of binary models, does not need “special regressors”, additive separability on observables or differentiability conditions. Some ideas for this new identification strategy are borrowed from Theorem 2 in Matzkin (1993) that intends to identify all the sub-utility functions but one and also the distribution of the shocks in differences. However, the proof of this published theorem is incorrect and this paper is the first literature pointing this out and providing a new proof of a different version of the theorem after modifications of its assumptions.

Suggested Citation

  • Otero, Karina V., 2016. "Nonparametric identification of static multinomial choice models," MPRA Paper 86785, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:86785
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/86785/1/MPRA_paper_86785.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nevo, Aviv, 2001. "Measuring Market Power in the Ready-to-Eat Cereal Industry," Econometrica, Econometric Society, vol. 69(2), pages 307-342, March.
    2. Matzkin, Rosa L., 1993. "Nonparametric identification and estimation of polychotomous choice models," Journal of Econometrics, Elsevier, vol. 58(1-2), pages 137-168, July.
    3. Manski, Charles F., 1975. "Maximum score estimation of the stochastic utility model of choice," Journal of Econometrics, Elsevier, vol. 3(3), pages 205-228, August.
    4. Lewbel, Arthur, 2000. "Semiparametric qualitative response model estimation with unknown heteroscedasticity or instrumental variables," Journal of Econometrics, Elsevier, vol. 97(1), pages 145-177, July.
    5. Briesch, Richard A. & Chintagunta, Pradeep K. & Matzkin, Rosa L., 2010. "Nonparametric Discrete Choice Models With Unobserved Heterogeneity," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(2), pages 291-307.
    6. Rosa L. Matzkin, 2013. "Nonparametric Identification in Structural Economic Models," Annual Review of Economics, Annual Reviews, vol. 5(1), pages 457-486, May.
    7. Berry, Steven & Levinsohn, James & Pakes, Ariel, 1995. "Automobile Prices in Market Equilibrium," Econometrica, Econometric Society, vol. 63(4), pages 841-890, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin O'Connell & Pierre Dubois & Rachel Griffith, 2022. "The Use of Scanner Data for Economics Research," Annual Review of Economics, Annual Reviews, vol. 14(1), pages 723-745, August.
    2. Pietro Tebaldi & Alexander Torgovitsky & Hanbin Yang, 2023. "Nonparametric Estimates of Demand in the California Health Insurance Exchange," Econometrica, Econometric Society, vol. 91(1), pages 107-146, January.
    3. Steven T. Berry & Philip A. Haile, 2009. "Nonparametric Identification of Multinomial Choice Demand Models with Heterogeneous Consumers," NBER Working Papers 15276, National Bureau of Economic Research, Inc.
    4. Matzkin, Rosa L., 2012. "Identification in nonparametric limited dependent variable models with simultaneity and unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 166(1), pages 106-115.
    5. Steven T. Berry & Philip A. Haile, 2014. "Identification in Differentiated Products Markets Using Market Level Data," Econometrica, Econometric Society, vol. 82, pages 1749-1797, September.
    6. Matzkin, Rosa L., 2019. "Constructive identification in some nonseparable discrete choice models," Journal of Econometrics, Elsevier, vol. 211(1), pages 83-103.
    7. Mogens Fosgerau & Dennis Kristensen, 2021. "Identification of a class of index models: A topological approach," The Econometrics Journal, Royal Economic Society, vol. 24(1), pages 121-133.
    8. Jeremy T. Fox, 2018. "Estimating matching games with transfers," Quantitative Economics, Econometric Society, vol. 9(1), pages 1-38, March.
    9. Francesca Molinari, 2020. "Microeconometrics with Partial Identification," Papers 2004.11751, arXiv.org.
    10. Francesca Molinari, 2019. "Econometrics with Partial Identification," CeMMAP working papers CWP25/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    11. Park, Byeong U. & Simar, Léopold & Zelenyuk, Valentin, 2017. "Nonparametric estimation of dynamic discrete choice models for time series data," Computational Statistics & Data Analysis, Elsevier, vol. 108(C), pages 97-120.
    12. Yingying Dong & Arthur Lewbel, 2015. "A Simple Estimator for Binary Choice Models with Endogenous Regressors," Econometric Reviews, Taylor & Francis Journals, vol. 34(1-2), pages 82-105, February.
    13. Amit Gandhi & Jeremy T. Fox, 2009. "Identifying Heterogeneity in Economic Choice and Selection Models Using Mixtures," 2009 Meeting Papers 165, Society for Economic Dynamics.
    14. Peter Davis & Pasquale Schiraldi, 2014. "The flexible coefficient multinomial logit (FC-MNL) model of demand for differentiated products," RAND Journal of Economics, RAND Corporation, vol. 45(1), pages 32-63, March.
    15. Burda, Martin & Harding, Matthew & Hausman, Jerry, 2012. "A Poisson mixture model of discrete choice," Journal of Econometrics, Elsevier, vol. 166(2), pages 184-203.
    16. Moon, Hyungsik Roger & Shum, Matthew & Weidner, Martin, 2018. "Estimation of random coefficients logit demand models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 206(2), pages 613-644.
    17. Wang, Ao, 2020. "Identifying the Distribution of Random Coefficients in BLP Demand Models Using One Single Variation in Product Characteristics," The Warwick Economics Research Paper Series (TWERPS) 1304, University of Warwick, Department of Economics.
    18. Patrick Bajari & Jeremy Fox & Stephen Ryan, 2008. "Evaluating wireless carrier consolidation using semiparametric demand estimation," Quantitative Marketing and Economics (QME), Springer, vol. 6(4), pages 299-338, December.
    19. Jeremy T. Fox, 2010. "Identification in matching games," Quantitative Economics, Econometric Society, vol. 1(2), pages 203-254, November.
    20. Kyoo il Kim, 2014. "Identification of the Distribution of Random Coefficients in Static and Dynamic Discrete Choice Models," Korean Economic Review, Korean Economic Association, vol. 30, pages 191-216.

    More about this item

    Keywords

    Nonparametric identification; Markov decision processes; discrete choice.;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C35 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:86785. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.