IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/72039.html
   My bibliography  Save this paper

Parallel Computing in Economics - An Overview of the Software Frameworks

Author

Listed:
  • Oancea, Bogdan

Abstract

This paper discusses problems related to parallel computing applied in economics. It introduces the paradigms of parallel computing and emphasizes the new trends in this field - a combination between GPU computing, multicore computing and distributed computing. It also gives examples of problems arising from economics where these parallel methods can be used to speed up the computations

Suggested Citation

  • Oancea, Bogdan, 2014. "Parallel Computing in Economics - An Overview of the Software Frameworks," MPRA Paper 72039, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:72039
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/72039/1/MPRA_paper_72039.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael Creel, 2007. "I ran four million probits last night: HPC clustering with ParallelKnoppix," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(1), pages 215-223.
    2. Aldrich, Eric M. & Fernández-Villaverde, Jesús & Ronald Gallant, A. & Rubio-Ramírez, Juan F., 2011. "Tapping the supercomputer under your desk: Solving dynamic equilibrium models with graphics processors," Journal of Economic Dynamics and Control, Elsevier, vol. 35(3), pages 386-393, March.
    3. Matt Dziubinski & Stefano Grassi, 2014. "Heterogeneous Computing in Economics: A Simplified Approach," Computational Economics, Springer;Society for Computational Economics, vol. 43(4), pages 485-495, April.
    4. Jacek Gondzio & Roy Kouwenberg, 2001. "High-Performance Computing for Asset-Liability Management," Operations Research, INFORMS, vol. 49(6), pages 879-891, December.
    5. Eric Aldrich, 2012. "Trading Volume in General Equilibrium with Complete Markets," 2012 Meeting Papers 36, Society for Economic Dynamics.
    6. Michael Creel & Sonik Mandal & Mohammad Zubair, 2012. "Econometrics on GPUs," UFAE and IAE Working Papers 921.12, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
    7. Michael Creel, 2005. "User-Friendly Parallel Computations with Econometric Examples," Computational Economics, Springer;Society for Computational Economics, vol. 26(2), pages 107-128, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Casarin, Roberto & Grassi, Stefano & Ravazzolo, Francesco & van Dijk, Herman K., 2015. "Parallel Sequential Monte Carlo for Efficient Density Combination: The DeCo MATLAB Toolbox," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 68(i03).
    2. Nalan Baştürk & Stefano Grassi & Lennart Hoogerheide & Herman K. Van Dijk, 2016. "Parallelization Experience with Four Canonical Econometric Models Using ParMitISEM," Econometrics, MDPI, vol. 4(1), pages 1-20, March.
    3. Aldrich, EM, 2014. "GPU Computing in Economics," Santa Cruz Department of Economics, Working Paper Series qt8p12748g, Department of Economics, UC Santa Cruz.
    4. Michael Creel, 2008. "Using Parallelization to Solve a Macroeconomic Model: A Parallel Parameterized Expectations Algorithm," Computational Economics, Springer;Society for Computational Economics, vol. 32(4), pages 343-352, November.
    5. Roberto Casarin & Stefano Grassi & Francesco Ravazzolo & Herman K. van Dijk, 2015. "Dynamic predictive density combinations for large data sets in economics and finance," Working Paper 2015/12, Norges Bank.
    6. Matt Dziubinski & Stefano Grassi, 2014. "Heterogeneous Computing in Economics: A Simplified Approach," Computational Economics, Springer;Society for Computational Economics, vol. 43(4), pages 485-495, April.
    7. Kyle Klein & Julian Neira, 2014. "Nelder-Mead Simplex Optimization Routine for Large-Scale Problems: A Distributed Memory Implementation," Computational Economics, Springer;Society for Computational Economics, vol. 43(4), pages 447-461, April.
    8. Michael Creel & William Goffe, 2008. "Multi-core CPUs, Clusters, and Grid Computing: A Tutorial," Computational Economics, Springer;Society for Computational Economics, vol. 32(4), pages 353-382, November.
    9. Michael S. Delgado & Christopher F. Parmeter, 2013. "Embarrassingly Easy Embarrassingly Parallel Processing in R: Implementation and Reproducibility," Working Papers 2013-06, University of Miami, Department of Economics.
    10. John Gibson & James P Henson, 2016. "Getting the most from MATLAB: ditching canned routines and embracing coder," Economics Bulletin, AccessEcon, vol. 36(4), pages 2519-2525.
    11. Michael Creel, 2009. "A Data Mining Approach to Indirect Inference," UFAE and IAE Working Papers 788.09, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC), revised 25 Oct 2009.
    12. Yongyang Cai & Kenneth Judd & Greg Thain & Stephen Wright, 2015. "Solving Dynamic Programming Problems on a Computational Grid," Computational Economics, Springer;Society for Computational Economics, vol. 45(2), pages 261-284, February.
    13. Roberto Casarin & Stefano Grassi & Francesco Ravazzolo & Herman K. van Dijk, 2020. "A Bayesian Dynamic Compositional Model for Large Density Combinations in Finance," Working Paper series 20-27, Rimini Centre for Economic Analysis.
    14. Lilia Maliar, 2015. "Assessing gains from parallel computation on a supercomputer," Economics Bulletin, AccessEcon, vol. 35(1), pages 159-167.
    15. Morozov, Sergei & Mathur, Sudhanshu, 2009. "Massively parallel computation using graphics processors with application to optimal experimentation in dynamic control," MPRA Paper 30298, University Library of Munich, Germany, revised 04 Apr 2011.
    16. Robert Kirkby, 2017. "A Toolkit for Value Function Iteration," Computational Economics, Springer;Society for Computational Economics, vol. 49(1), pages 1-15, January.
    17. Sergei Morozov & Sudhanshu Mathur, 2012. "Massively Parallel Computation Using Graphics Processors with Application to Optimal Experimentation in Dynamic Control," Computational Economics, Springer;Society for Computational Economics, vol. 40(2), pages 151-182, August.
    18. Michael C. Hatcher & Eric M. Scheffel, 2016. "Solving the Incomplete Markets Model in Parallel Using GPU Computing and the Krusell–Smith Algorithm," Computational Economics, Springer;Society for Computational Economics, vol. 48(4), pages 569-591, December.
    19. Gondzio, Jacek & Grothey, Andreas, 2007. "Solving non-linear portfolio optimization problems with the primal-dual interior point method," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1019-1029, September.
    20. Andrew Foerster & Juan F. Rubio‐Ramírez & Daniel F. Waggoner & Tao Zha, 2016. "Perturbation methods for Markov‐switching dynamic stochastic general equilibrium models," Quantitative Economics, Econometric Society, vol. 7(2), pages 637-669, July.

    More about this item

    Keywords

    Parallel Computing; GPU Computing; MPI; OpenMP; CUDA; Computational economics;
    All these keywords.

    JEL classification:

    • C88 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Other Computer Software

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:72039. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.