IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/53671.html
   My bibliography  Save this paper

Fat-tailed uncertainty and the learning-effect

Author

Listed:
  • Hwang, In Chang

Abstract

One of the recent findings in the economics of climate change is that emissions control plays a significant role in the reduction of the tail-effect of fat-tailed uncertainty on welfare. The current paper gives another perspective: the learning-effect. The effect of emissions control on welfare is decomposed into the direct effect and the learning-effect. Although this has been known for thin-tailed uncertainty in the literature, this paper takes a different approach: the changes in temperature distributions under fat-tailed uncertainty and learning.

Suggested Citation

  • Hwang, In Chang, 2014. "Fat-tailed uncertainty and the learning-effect," MPRA Paper 53671, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:53671
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/53671/1/MPRA_paper_53671.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kolstad, Charles D., 1996. "Learning and Stock Effects in Environmental Regulation: The Case of Greenhouse Gas Emissions," Journal of Environmental Economics and Management, Elsevier, vol. 31(1), pages 1-18, July.
    2. Horowitz, John & Lange, Andreas, 2014. "Cost–benefit analysis under uncertainty — A note on Weitzman's dismal theorem," Energy Economics, Elsevier, vol. 42(C), pages 201-203.
    3. Antony Millner, 2013. "On Welfare Frameworks and Catastrophic Climate Risks," CESifo Working Paper Series 4442, CESifo.
    4. Richard S. J. Tol & In Chang Hwang & Frédéric Reynès, 2012. "The Effect of Learning on Climate Policy under Fat-tailed Uncertainty," Working Paper Series 5312, Department of Economics, University of Sussex Business School.
    5. Martin Weitzman, 2013. "A Precautionary Tale of Uncertain Tail Fattening," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 55(2), pages 159-173, June.
    6. Robert S. Pindyck, 2011. "Fat Tails, Thin Tails, and Climate Change Policy," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 5(2), pages 258-274, Summer.
    7. In Chang Hwang & Richard S.J. Tol & Marjan W. Hofkes, 2013. "Active Learning about Climate Change," Working Paper Series 6513, Department of Economics, University of Sussex Business School.
    8. Martin L. Weitzman, 2009. "On Modeling and Interpreting the Economics of Catastrophic Climate Change," The Review of Economics and Statistics, MIT Press, vol. 91(1), pages 1-19, February.
    9. Kolstad, Charles D., 1996. "Fundamental irreversibilities in stock externalities," Journal of Public Economics, Elsevier, vol. 60(2), pages 221-233, May.
    10. Alistair Ulph & David Ulph, "undated". "Global Warming, Irreversibility And Learning," ELSE working papers 056, ESRC Centre on Economics Learning and Social Evolution.
    11. In Hwang & Frédéric Reynès & Richard Tol, 2013. "Climate Policy Under Fat-Tailed Risk: An Application of Dice," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 56(3), pages 415-436, November.
    12. Leach, Andrew J., 2007. "The climate change learning curve," Journal of Economic Dynamics and Control, Elsevier, vol. 31(5), pages 1728-1752, May.
    13. Martin L. Weitzman, 2012. "GHG Targets as Insurance Against Catastrophic Climate Damages," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 14(2), pages 221-244, March.
    14. Karp, Larry S., 2009. "Sacrifice, discounting and climate policy : five questions," CUDARE Working Paper Series 1086, University of California at Berkeley, Department of Agricultural and Resource Economics and Policy.
    15. Karp, Larry S., 2009. "Sacrifice, discounting and climate policy: five questions," CUDARE Working Papers 51612, University of California, Berkeley, Department of Agricultural and Resource Economics.
    16. Pindyck, Robert S., 2012. "Uncertain outcomes and climate change policy," Journal of Environmental Economics and Management, Elsevier, vol. 63(3), pages 289-303.
    17. -, 2009. "The economics of climate change," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 38679, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    18. Cyert, Richard M & DeGroot, Morris H, 1974. "Rational Expectations and Bayesian Analysis," Journal of Political Economy, University of Chicago Press, vol. 82(3), pages 521-536, May/June.
    19. Ingham, Alan & Ma, Jie & Ulph, Alistair, 2007. "Climate change, mitigation and adaptation with uncertainty and learning," Energy Policy, Elsevier, vol. 35(11), pages 5354-5369, November.
    20. Millner, Antony, 2013. "On welfare frameworks and catastrophic climate risks," Journal of Environmental Economics and Management, Elsevier, vol. 65(2), pages 310-325.
    21. Ulph, Alistair & Ulph, David, 1997. "Global Warming, Irreversibility and Learning," Economic Journal, Royal Economic Society, vol. 107(442), pages 636-650, May.
    22. Mort Webster, 2002. "The Curious Role of "Learning" in Climate Policy: Should We Wait for More Data?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 97-119.
    23. Kelly, David L. & Kolstad, Charles D., 1999. "Bayesian learning, growth, and pollution," Journal of Economic Dynamics and Control, Elsevier, vol. 23(4), pages 491-518, February.
    24. Hwang, In Chang & Reynès, Frédéric & Tol, Richard S.J., 2017. "The effect of learning on climate policy under fat-tailed risk," Resource and Energy Economics, Elsevier, vol. 48(C), pages 1-18.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Richard S. J. Tol & In Chang Hwang & Frédéric Reynès, 2012. "The Effect of Learning on Climate Policy under Fat-tailed Uncertainty," Working Paper Series 5312, Department of Economics, University of Sussex Business School.
    2. Kelly, David L. & Tan, Zhuo, 2015. "Learning and climate feedbacks: Optimal climate insurance and fat tails," Journal of Environmental Economics and Management, Elsevier, vol. 72(C), pages 98-122.
    3. Lemoine, Derek & Traeger, Christian P., 2016. "Ambiguous tipping points," Journal of Economic Behavior & Organization, Elsevier, vol. 132(PB), pages 5-18.
    4. In Chang Hwang, 2016. "Active learning and optimal climate policy," EcoMod2016 9611, EcoMod.
    5. Hwang, In Chang, 2014. "A recursive method for solving a climate-economy model: value function iterations with logarithmic approximations," MPRA Paper 54782, University Library of Munich, Germany.
    6. Hwang, In Chang & Tol, Richard S.J. & Hofkes, Marjan W., 2016. "Fat-tailed risk about climate change and climate policy," Energy Policy, Elsevier, vol. 89(C), pages 25-35.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. In Chang Hwang, 2016. "Active learning and optimal climate policy," EcoMod2016 9611, EcoMod.
    2. In Chang Hwang & Richard S. J. Tol & Marjan W. Hofkes, 2019. "Active Learning and Optimal Climate Policy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(4), pages 1237-1264, August.
    3. Hwang, In Chang & Reynès, Frédéric & Tol, Richard S.J., 2017. "The effect of learning on climate policy under fat-tailed risk," Resource and Energy Economics, Elsevier, vol. 48(C), pages 1-18.
    4. In Chang Hwang & Richard S.J. Tol & Marjan W. Hofkes, 2013. "Active Learning about Climate Change," Working Paper Series 6513, Department of Economics, University of Sussex Business School.
    5. Richard S. J. Tol & In Chang Hwang & Frédéric Reynès, 2012. "The Effect of Learning on Climate Policy under Fat-tailed Uncertainty," Working Paper Series 5312, Department of Economics, University of Sussex Business School.
    6. Hwang, In Chang & Tol, Richard S.J. & Hofkes, Marjan W., 2016. "Fat-tailed risk about climate change and climate policy," Energy Policy, Elsevier, vol. 89(C), pages 25-35.
    7. W. Botzen & Jeroen Bergh, 2014. "Specifications of Social Welfare in Economic Studies of Climate Policy: Overview of Criteria and Related Policy Insights," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 58(1), pages 1-33, May.
    8. In Hwang & Frédéric Reynès & Richard Tol, 2013. "Climate Policy Under Fat-Tailed Risk: An Application of Dice," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 56(3), pages 415-436, November.
    9. In Chang Hwang & Richard S.J. Tol & Marjan W. Hofkes, 2013. "Tail-effect and the Role of Greenhouse Gas Emissions Control," Working Paper Series 6613, Department of Economics, University of Sussex Business School.
    10. Andrea Rampa, 2020. "Climate change, catastrophes and Dismal Theorem: a critical review [Klimawandel, Katastrophen und das „Dismal Theorem“: eine kritische Überprüfung]," Review of Regional Research: Jahrbuch für Regionalwissenschaft, Springer;Gesellschaft für Regionalforschung (GfR), vol. 40(2), pages 113-136, October.
    11. Kelly, David L. & Tan, Zhuo, 2015. "Learning and climate feedbacks: Optimal climate insurance and fat tails," Journal of Environmental Economics and Management, Elsevier, vol. 72(C), pages 98-122.
    12. Dellink, Rob & Finus, Michael, 2012. "Uncertainty and climate treaties: Does ignorance pay?," Resource and Energy Economics, Elsevier, vol. 34(4), pages 565-584.
    13. David Anthoff & Richard S. J. Tol, 2022. "Testing the Dismal Theorem," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 9(5), pages 885-920.
    14. Tol, Richard S.J., 2013. "Targets for global climate policy: An overview," Journal of Economic Dynamics and Control, Elsevier, vol. 37(5), pages 911-928.
    15. Chambers, Robert G. & Melkonyan, Tigran, 2017. "Ambiguity, reasoned determination, and climate-change policy," Journal of Environmental Economics and Management, Elsevier, vol. 81(C), pages 74-92.
    16. Ikefuji, Masako & Laeven, Roger J.A. & Magnus, Jan R. & Muris, Chris, 2020. "Expected utility and catastrophic risk in a stochastic economy–climate model," Journal of Econometrics, Elsevier, vol. 214(1), pages 110-129.
    17. Lontzek, Thomas S. & Narita, Daiju, 2009. "The effect of uncertainty on decision making about climate change mitigation: a numerical approach of stochastic control," Kiel Working Papers 1539, Kiel Institute for the World Economy (IfW Kiel).
    18. Christoph M. Rheinberger & Nicolas Treich, 2017. "Attitudes Toward Catastrophe," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(3), pages 609-636, July.
    19. De Bruin, Kelly & Kiran Krishnamurthy, Chandra, 2021. "Optimal Climate Policy with Fat-tailed Uncertainty: What the Models Can Tell Us," Papers WP697, Economic and Social Research Institute (ESRI).
    20. Alistair Ulph & Pedro Pintassilgo & Michael Finus, 2019. "Uncertainty, Learning and International Environmental Agreements: The Role of Risk Aversion," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(4), pages 1165-1196, August.

    More about this item

    Keywords

    Climate policy; deep uncertainty; Dismal Theorem; tail-effect; learning-effect;
    All these keywords.

    JEL classification:

    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:53671. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.