IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/54782.html
   My bibliography  Save this paper

A recursive method for solving a climate-economy model: value function iterations with logarithmic approximations

Author

Listed:
  • Hwang, In Chang

Abstract

A recursive method for solving an integrated assessment model of climate and the economy is developed in this paper. The method approximates value function with a logarithmic basis function and searches for solutions on a set satisfying optimality conditions. These features make the method suitable for a highly nonlinear model with many state variables and various constraints, as usual in a climate-economy model.

Suggested Citation

  • Hwang, In Chang, 2014. "A recursive method for solving a climate-economy model: value function iterations with logarithmic approximations," MPRA Paper 54782, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:54782
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/54782/1/MPRA_paper_54782.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Derek Lemoine & Christian Traeger, 2014. "Watch Your Step: Optimal Policy in a Tipping Climate," American Economic Journal: Economic Policy, American Economic Association, vol. 6(1), pages 137-166, February.
    2. Richard S. J. Tol & In Chang Hwang & Frédéric Reynès, 2012. "The Effect of Learning on Climate Policy under Fat-tailed Uncertainty," Working Paper Series 5312, Department of Economics, University of Sussex Business School.
    3. In Chang Hwang & Richard S.J. Tol & Marjan W. Hofkes, 2013. "Active Learning about Climate Change," Working Paper Series 6513, Department of Economics, University of Sussex Business School.
    4. Hennlock, Magnus, 2009. "Robust Control in Global Warming Management: An Analytical Dynamic Integrated Assessment," Working Papers in Economics 354, University of Gothenburg, Department of Economics.
    5. Kenneth L. Judd & Lilia Maliar & Serguei Maliar, 2011. "Numerically stable and accurate stochastic simulation approaches for solving dynamic economic models," Quantitative Economics, Econometric Society, vol. 2(2), pages 173-210, July.
    6. Rust, John, 1996. "Numerical dynamic programming in economics," Handbook of Computational Economics, in: H. M. Amman & D. A. Kendrick & J. Rust (ed.), Handbook of Computational Economics, edition 1, volume 1, chapter 14, pages 619-729, Elsevier.
    7. Leach, Andrew J., 2007. "The climate change learning curve," Journal of Economic Dynamics and Control, Elsevier, vol. 31(5), pages 1728-1752, May.
    8. Hwang, In Chang, 2014. "Fat-tailed uncertainty and the learning-effect," MPRA Paper 53671, University Library of Munich, Germany.
    9. Hennlock, Magnus, 2009. "Robust Control in Global Warming Management: An Analytical Dynamic Integrated Assessment," RFF Working Paper Series dp-09-19, Resources for the Future.
    10. Mario J. Miranda & Paul L. Fackler, 2004. "Applied Computational Economics and Finance," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262633094, April.
    11. Kelly, David L. & Kolstad, Charles D., 1999. "Bayesian learning, growth, and pollution," Journal of Economic Dynamics and Control, Elsevier, vol. 23(4), pages 491-518, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Heutel, Garth & Moreno-Cruz, Juan & Shayegh, Soheil, 2018. "Solar geoengineering, uncertainty, and the price of carbon," Journal of Environmental Economics and Management, Elsevier, vol. 87(C), pages 24-41.
    2. Hwang, In Chang & Reynès, Frédéric & Tol, Richard S.J., 2017. "The effect of learning on climate policy under fat-tailed risk," Resource and Energy Economics, Elsevier, vol. 48(C), pages 1-18.
    3. In Chang Hwang, 2016. "Active learning and optimal climate policy," EcoMod2016 9611, EcoMod.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. In Chang Hwang, 2017. "A Recursive Method for Solving a Climate–Economy Model: Value Function Iterations with Logarithmic Approximations," Computational Economics, Springer;Society for Computational Economics, vol. 50(1), pages 95-110, June.
    2. Richard S. J. Tol & In Chang Hwang & Frédéric Reynès, 2012. "The Effect of Learning on Climate Policy under Fat-tailed Uncertainty," Working Paper Series 5312, Department of Economics, University of Sussex Business School.
    3. In Chang Hwang & Richard S.J. Tol & Marjan W. Hofkes, 2013. "Active Learning about Climate Change," Working Paper Series 6513, Department of Economics, University of Sussex Business School.
    4. Lemoine, Derek & Traeger, Christian P., 2016. "Ambiguous tipping points," Journal of Economic Behavior & Organization, Elsevier, vol. 132(PB), pages 5-18.
    5. In Chang Hwang, 2016. "Active learning and optimal climate policy," EcoMod2016 9611, EcoMod.
    6. Kelly, David L. & Tan, Zhuo, 2015. "Learning and climate feedbacks: Optimal climate insurance and fat tails," Journal of Environmental Economics and Management, Elsevier, vol. 72(C), pages 98-122.
    7. Mark Kagan, 2012. "Climate Change Skepticism in the Face of Catastrophe," Tinbergen Institute Discussion Papers 12-112/VIII, Tinbergen Institute, revised 29 Sep 2014.
    8. Hwang, In Chang & Reynès, Frédéric & Tol, Richard S.J., 2017. "The effect of learning on climate policy under fat-tailed risk," Resource and Energy Economics, Elsevier, vol. 48(C), pages 1-18.
    9. Hwang, In Chang, 2014. "Fat-tailed uncertainty and the learning-effect," MPRA Paper 53671, University Library of Munich, Germany.
    10. Hwang, In Chang & Tol, Richard S.J. & Hofkes, Marjan W., 2016. "Fat-tailed risk about climate change and climate policy," Energy Policy, Elsevier, vol. 89(C), pages 25-35.
    11. In Chang Hwang & Richard S. J. Tol & Marjan W. Hofkes, 2019. "Active Learning and Optimal Climate Policy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(4), pages 1237-1264, August.
    12. In Hwang & Frédéric Reynès & Richard Tol, 2013. "Climate Policy Under Fat-Tailed Risk: An Application of Dice," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 56(3), pages 415-436, November.
    13. Ahlvik, Lassi & Iho, Antti, 2018. "Optimal geoengineering experiments," Journal of Environmental Economics and Management, Elsevier, vol. 92(C), pages 148-168.
    14. Ikefuji, Masako & Laeven, Roger J.A. & Magnus, Jan R. & Muris, Chris, 2020. "Expected utility and catastrophic risk in a stochastic economy–climate model," Journal of Econometrics, Elsevier, vol. 214(1), pages 110-129.
    15. van den Bijgaart, Inge & Gerlagh, Reyer & Liski, Matti, 2016. "A simple formula for the social cost of carbon," Journal of Environmental Economics and Management, Elsevier, vol. 77(C), pages 75-94.
    16. David García-León, 2016. "Adapting to Climate Change: an Analysis under Uncertainty," Working Papers 2016.10, Fondazione Eni Enrico Mattei.
    17. van den Bijgaart, Inge, 2016. "Essays in environmental economics and policy," Other publications TiSEM 298bee2a-cb08-4173-9fe1-8, Tilburg University, School of Economics and Management.
    18. Christian Traeger, 2014. "A 4-Stated DICE: Quantitatively Addressing Uncertainty Effects in Climate Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 59(1), pages 1-37, September.
    19. Wonjun Chang & Thomas F. Rutherford, 2017. "Catastrophic Thresholds, Bayesian Learning And The Robustness Of Climate Policy Recommendations," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 8(04), pages 1-23, November.
    20. Hess, Joshua H. & Manning, Dale T. & Iverson, Terry & Cutler, Harvey, 2019. "Uncertainty, learning, and local opposition to hydraulic fracturing," Resource and Energy Economics, Elsevier, vol. 55(C), pages 102-123.

    More about this item

    Keywords

    Dynamic programming; recursive method; value function iteration; integrated assessment;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:54782. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.