IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/51840.html
   My bibliography  Save this paper

Measuring Maize Price Volatility in Swaziland using ARCH/GARCH approach

Author

Listed:
  • Sukati, Mphumuzi

Abstract

This paper investigates maize price volatility in Swaziland as offered by NMC, an organization with a mandate of stabilizing prices in the country. Price volatility is analyzed using ARCH/GARCH modeling techniques. Results show that the organization has not been able to stabilize prices in the past years. This is likely because of exogenous global shocks in maize prices which are transmitted to the local market. These external shocks transmission are mainly because the organization imports a lot of maize to meet local demand. However, although prices have been volatile, the organization has been able to control persistence in volatility. Asymmetric analysis of the prices shows that prices have not reacted unequally to shock increase or decrease in prices. However, increase in maize prices has been seen as fueling volatility, which does not bode well for consumers. This analysis therefore has formed an important contribution to analysis of storage facilities and their role in stabilizing prices. Storage facilities will become important especially for third world countries with increased unpredictability in agricultural production due to climate change.

Suggested Citation

  • Sukati, Mphumuzi, 2013. "Measuring Maize Price Volatility in Swaziland using ARCH/GARCH approach," MPRA Paper 51840, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:51840
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/51840/1/MPRA_paper_51840.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. McPhail, Lihong Lu & Du, Xiaodong & Muhammad, Andrew, 2012. "Disentangling Corn Price Volatility: The Role of Global Demand, Speculation, and Energy," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 44(3), pages 1-10, August.
    2. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    3. Williams,Jeffrey C. & Wright,Brian D., 2005. "Storage and Commodity Markets," Cambridge Books, Cambridge University Press, number 9780521023399, October.
    4. Beck, Stacie E, 1993. "A Rational Expectations Model of Time Varying Risk Premia in Commodities Futures Markets: Theory and Evidence," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 34(1), pages 149-168, February.
    5. Zakoian, Jean-Michel, 1994. "Threshold heteroskedastic models," Journal of Economic Dynamics and Control, Elsevier, vol. 18(5), pages 931-955, September.
    6. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    7. Jordaan, Henry & Grove, Bennie & Jooste, Andre & Alemu, A.G., 2007. "Measuring the Price Volatility of Certain Field Crops in South Africa using the ARCH/GARCH Approach," Agrekon, Agricultural Economics Association of South Africa (AEASA), vol. 46(3), pages 1-17, September.
    8. Tran, A. Nam & Welch, Jarrod R. & Lobell, David & Roberts, Michael J. & Schlenker, Wolfram, 2012. "Commodity Prices and Volatility in Response to Anticipated Climate Change," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 124827, Agricultural and Applied Economics Association.
    9. Apergis, Nicholas & Rezitis, Anthony, 2011. "Food Price Volatility and Macroeconomic Factors: Evidence from GARCH and GARCH-X Estimates," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 43(1), pages 95-110, February.
    10. Engle, Robert F & Lilien, David M & Robins, Russell P, 1987. "Estimating Time Varying Risk Premia in the Term Structure: The Arch-M Model," Econometrica, Econometric Society, vol. 55(2), pages 391-407, March.
    11. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bukenya, James O., 2017. "Assessment of Price Volatility in the Fisheries Sector in Uganda," Journal of Food Distribution Research, Food Distribution Research Society, vol. 48(1), March.
    2. Abokyi, Emmanuel & Asiedu, Kofi Fred, 2021. "Agricultural policy and commodity price stabilisation in Ghana: The role of buffer stockholding operations," African Journal of Agricultural and Resource Economics, African Association of Agricultural Economists, vol. 16(4), December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Köksal, Bülent, 2009. "A Comparison of Conditional Volatility Estimators for the ISE National 100 Index Returns," MPRA Paper 30510, University Library of Munich, Germany.
    2. Korap, Levent, 2010. "An econometric essay for the asymmetric volatility content of the portfolio flows: EGARCH evidence from the Turkish economy," MPRA Paper 28752, University Library of Munich, Germany.
    3. Dominique Guegan & Bertrand K. Hassani, 2019. "Risk Measurement," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02119256, HAL.
    4. Yu-Hua Zeng & Shou-Lei Wang & Yu-Fei Yang, 2014. "Calibration of the Volatility in Option Pricing Using the Total Variation Regularization," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-9, March.
    5. Nora Abu Asab & Juan Carlos Cuestas & Alberto Montagnoli, 2018. "Inflation targeting or exchange rate targeting: Which framework supports the goal of price stability in emerging market economies?," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-21, August.
    6. Jamal Bouoiyour & Refk Selmi, 2015. "Exchange volatility and export performance in Egypt: New insights from wavelet decomposition and optimal GARCH model," The Journal of International Trade & Economic Development, Taylor & Francis Journals, vol. 24(2), pages 201-227, March.
    7. Blasques, Francisco & Ji, Jiangyu & Lucas, André, 2016. "Semiparametric score driven volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 58-69.
    8. Murinde V. & Poshakwala S., 2001. "Volatility in the Emerging Stock Markets in Central and Eastern Europe: Evidence on Croatia, Czech Republic, Hungary, Poland, Russia and Slovakia," European Research Studies Journal, European Research Studies Journal, vol. 0(3-4), pages 73-102, July - De.
    9. Amare Wubishet Ayele & Emmanuel Gabreyohannes & Yohannes Yebabe Tesfay, 2017. "Macroeconomic Determinants of Volatility for the Gold Price in Ethiopia: The Application of GARCH and EWMA Volatility Models," Global Business Review, International Management Institute, vol. 18(2), pages 308-326, April.
    10. Yun-Shi Dai & Peng-Fei Dai & Wei-Xing Zhou, 2024. "The impact of geopolitical risk on the international agricultural market: Empirical analysis based on the GJR-GARCH-MIDAS model," Papers 2404.01641, arXiv.org.
    11. G. Boero & E. Marrocu, 2001. "Evaluating non-linear models on point and interval forecasts: an application with exchange rate returns," Working Paper CRENoS 200110, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    12. Mohd Aminul Islam, 2014. "A Study on the Performance of Symmetric and Asymmetric GARCH Models in Estimating Stock Returns Volatility," International Journal of Empirical Finance, Research Academy of Social Sciences, vol. 2(4), pages 182-192.
    13. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
      • Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
      • Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    14. Gerrit Reher & Bernd Wilfling, 2016. "A nesting framework for Markov-switching GARCH modelling with an application to the German stock market," Quantitative Finance, Taylor & Francis Journals, vol. 16(3), pages 411-426, March.
    15. Karime Sleiman & Sayilir Özlem, 2019. "Political news and stock market reactions: evidence from Turkey over the period 2008–2017," International Journal of Management and Economics, Warsaw School of Economics, Collegium of World Economy, vol. 55(2), pages 83-98, June.
    16. David McMillan & Alan Speight, 2003. "Asymmetric volatility dynamics in high frequency FTSE-100 stock index futures," Applied Financial Economics, Taylor & Francis Journals, vol. 13(8), pages 599-607.
    17. Chikashi Tsuji, 2016. "Does the fear gauge predict downside risk more accurately than econometric models? Evidence from the US stock market," Cogent Economics & Finance, Taylor & Francis Journals, vol. 4(1), pages 1220711-122, December.
    18. Awartani, Basel M.A. & Corradi, Valentina, 2005. "Predicting the volatility of the S&P-500 stock index via GARCH models: the role of asymmetries," International Journal of Forecasting, Elsevier, vol. 21(1), pages 167-183.
    19. Mehmet Sahiner, 2022. "Forecasting volatility in Asian financial markets: evidence from recursive and rolling window methods," SN Business & Economics, Springer, vol. 2(10), pages 1-74, October.
    20. Jorge Caiado, 2004. "Modelling And Forecasting The Volatility Of The Portuguese Stock Index Psi-20," Portuguese Journal of Management Studies, ISEG, Universidade de Lisboa, vol. 9(1), pages 3-21.

    More about this item

    Keywords

    NMC; Maize Prices; Volatility; ARCH/GARCH; Persistence; Climate Change; Storage Facilities;
    All these keywords.

    JEL classification:

    • A1 - General Economics and Teaching - - General Economics
    • A12 - General Economics and Teaching - - General Economics - - - Relation of Economics to Other Disciplines
    • O1 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development
    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products
    • Q1 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture
    • Q18 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Agricultural Policy; Food Policy; Animal Welfare Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:51840. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.