IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/46413.html
   My bibliography  Save this paper

Mean-Reverting Logarithmic Modeling of VIX

Author

Listed:
  • Bao, Qunfang

Abstract

Since March 26, 2004, when the CBOE Futures Exchange (CFE) began trading futures written on S&P500 volatility index (VIX), volatility has become a widely accepted asset class as trading, diversifying and hedging vehicle by traders, investors and portfolio managers over the past few years. On February 24, 2006, CBOE introduced options written on VIX index and since then VIX option series has now become the most actively traded index option series on CBOE. This thesis focuses on mathematical modeling of spot VIX with standalone approach. Unlike the consistent modeling approach in literature, which starts with specifying joint dynamics for SPX index and its instantaneous stochastic volatility then derives expression for spot VIX and price VIX derivatives based on this expression, standalone approach starts with directly specifying dynamics for spot VIX and prices VIX derivatives in this simpler framework. Although there is work in literature that studies the mean-reverting logarithmic model (MRLR), no work has been done in considering stochastic volatility in MRLR to capture the positive implied volatility skew of VIX option, nor have they compared the pure diffusion version of MRLR with its jump and/or stochastic volatility extensions. Furthermore, most of the literature only focus on static pricing formulas for VIX future and VIX option, no work has been done in investigating the dynamic feature of VIX future, calibration and hedging strategies of mean-reverting logarithmic models, as well as the convexity adjustment of VIX future from forward variance swap, which has a liquid variance swap market to back out the vol-of-vol information in mean-reverting logarithmic models. In this thesis, I present four versions of MRLR models. The first model is a pure diffusion model where spot VIX follows a mean-reverting logarithmic dynamics. Then I extend this basic MRLR model by adding jump or stochastic volatility into spot VIX dynamics to get MRLRJ and MRLRSV models. Finally, I combine jump and stochastic volatility together and add them into dynamics of spot VIX to get the fully specified MRLRSVJ model. For all the four models, I derive either transition function or conditional characteristic function of spot VIX. Based on those results, the pricing formulas for VIX future and VIX option are derived. In order to calibrate to VIX future term structure, I make the long-term mean of spot VIX be a time-dependent function and use the diffusion, jump and/or stochastic volatility parameters to calibrate VIX implied volatility surface. Two types of calibration strategies are suggested in this thesis. On the first stage of calibration, we need to calibrate all vol-of-vol parameters to convexity of spot VIX or VIX future. One strategy is to calibrate those parameters to VIX option implied volatility surface. Another strategy is to calibrate them to convexity adjustment of VIX future from forward variance swap, which can be replicated by liquid variance swaps. On the second stage of calibration, the long-term mean function of spot VIX is used to fit VIX futuer term structure given the vol-of-vol parameters calibrated on the first stage. In addition to the static pricing formula, dynamics of VIX future is also derived under all mean-reverting logarithmic models. The analysis in this thesis shows that VIX future follows geometric Brownian motion under MRLR model, jump-diffusion dynamics under MRLRJ model, stochastic volatility dynamics under MRLRSV model and stochastic volatility with jump dynamics under MRLRSVJ model. I develop the hedging strategies of VIX future and VIX option under mean-reverting logarithmic models. As spot VIX is not tradable asset, investors are unable to take positions on this index. Instead, research in literature has shown that a shorter-term VIX future has good power in forecasting movements of the subsequent VIX future. Therefore, hedging VIX future with a shorter-term VIX future is expected to perform well. Moreover, as VIX option can also be regarded as an option on a VIX future contract that has same maturity as VIX option, using the shorter-term VIX future contract as hedging instrument is a natural choice. In this thesis, I derive hedging ratios of VIX future and VIX option under the above hedging strategy. At last, numerical analysis in this thesis compares the four models in fitting VIX implied volatility surface. The results show that MRLR is unable to create positive implied volatility skew for VIX option. In contrast, MRLRJ and MRLRSV models perform equally well in fitting positive skew. However, the fully specified MRLRSVJ model adds little value in fitting VIX skew but incurs additional cost of calibrating more parameters and is subject to less stable parameters over maturities and over time.

Suggested Citation

  • Bao, Qunfang, 2013. "Mean-Reverting Logarithmic Modeling of VIX," MPRA Paper 46413, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:46413
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/46413/1/MPRA_paper_46413.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. S. G. Kou, 2002. "A Jump-Diffusion Model for Option Pricing," Management Science, INFORMS, vol. 48(8), pages 1086-1101, August.
    2. Lin, Yueh-Neng & Chang, Chien-Hung, 2010. "Consistent modeling of S&P 500 and VIX derivatives," Journal of Economic Dynamics and Control, Elsevier, vol. 34(11), pages 2302-2319, November.
    3. Jin E. Zhang & Yuqin Huang, 2010. "The CBOE S&P 500 three‐month variance futures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 30(1), pages 48-70, January.
    4. Chunsheng Zhou, 1997. "A jump-diffusion approach to modeling credit risk and valuing defaultable securities," Finance and Economics Discussion Series 1997-15, Board of Governors of the Federal Reserve System (U.S.).
    5. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    6. S. G. Kou & Hui Wang, 2004. "Option Pricing Under a Double Exponential Jump Diffusion Model," Management Science, INFORMS, vol. 50(9), pages 1178-1192, September.
    7. Grunbichler, Andreas & Longstaff, Francis A., 1996. "Valuing futures and options on volatility," Journal of Banking & Finance, Elsevier, vol. 20(6), pages 985-1001, July.
    8. Jérôme Detemple & Carlton Osakwe, 2000. "The Valuation of Volatility Options," Review of Finance, European Finance Association, vol. 4(1), pages 21-50.
    9. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    10. Zhiguang Wang & Robert T. Daigler, 2011. "The performance of VIX option pricing models: Empirical evidence beyond simulation," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 31(3), pages 251-281, March.
    11. Dotsis, George & Psychoyios, Dimitris & Skiadopoulos, George, 2007. "An empirical comparison of continuous-time models of implied volatility indices," Journal of Banking & Finance, Elsevier, vol. 31(12), pages 3584-3603, December.
    12. Dimitris Psychoyios & George Dotsis & Raphael Markellos, 2010. "A jump diffusion model for VIX volatility options and futures," Review of Quantitative Finance and Accounting, Springer, vol. 35(3), pages 245-269, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kozarski, R., 2013. "Pricing and hedging in the VIX derivative market," Other publications TiSEM 221fefe0-241e-4914-b6bd-c, Tilburg University, School of Economics and Management.
    2. Bao, Qunfang & Li, Shenghong & Gong, Donggeng, 2012. "Pricing VXX option with default risk and positive volatility skew," European Journal of Operational Research, Elsevier, vol. 223(1), pages 246-255.
    3. Yoo, Eun Gyu & Yoon, Sun-Joong, 2020. "CBOE VIX and Jump-GARCH option pricing models," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 839-859.
    4. Gonzalez-Perez, Maria T., 2015. "Model-free volatility indexes in the financial literature: A review," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 141-159.
    5. Xingguo Luo & Jin E. Zhang & Wenjun Zhang, 2019. "Instantaneous squared VIX and VIX derivatives," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(10), pages 1193-1213, October.
    6. Xiaoyu Tan & Chengxiang Wang & Wei Lin & Jin E. Zhang & Shenghong Li & Xuejun Zhao & Zili Zhang, 2021. "The term structure of the VXX option smirk: Pricing VXX option with a two‐factor model and asymmetry jumps," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(4), pages 439-457, April.
    7. Mencía, Javier & Sentana, Enrique, 2013. "Valuation of VIX derivatives," Journal of Financial Economics, Elsevier, vol. 108(2), pages 367-391.
    8. Ma, Jingtang & Li, Wenyuan & Han, Xu, 2015. "Stochastic lattice models for valuation of volatility options," Economic Modelling, Elsevier, vol. 47(C), pages 93-104.
    9. Kaeck, Andreas & Seeger, Norman J., 2020. "VIX derivatives, hedging and vol-of-vol risk," European Journal of Operational Research, Elsevier, vol. 283(2), pages 767-782.
    10. Daniel Guterding, 2020. "Inventory effects on the price dynamics of VSTOXX futures quantified via machine learning," Papers 2002.08207, arXiv.org.
    11. Yang-Ho Park, 2015. "The Effects of Asymmetric Volatility and Jumps on the Pricing of VIX Derivatives," Finance and Economics Discussion Series 2015-71, Board of Governors of the Federal Reserve System (U.S.).
    12. Cheng, Jun & Ibraimi, Meriton & Leippold, Markus & Zhang, Jin E., 2012. "A remark on Lin and Chang's paper ‘Consistent modeling of S&P 500 and VIX derivatives’," Journal of Economic Dynamics and Control, Elsevier, vol. 36(5), pages 708-715.
    13. Park, Yang-Ho, 2016. "The effects of asymmetric volatility and jumps on the pricing of VIX derivatives," Journal of Econometrics, Elsevier, vol. 192(1), pages 313-328.
    14. Li, Jing & Li, Lingfei & Zhang, Gongqiu, 2017. "Pure jump models for pricing and hedging VIX derivatives," Journal of Economic Dynamics and Control, Elsevier, vol. 74(C), pages 28-55.
    15. Huang, Hung-Hsi & Lin, Shin-Hung & Wang, Chiu-Ping, 2019. "Reasonable evaluation of VIX options for the Taiwan stock index," The North American Journal of Economics and Finance, Elsevier, vol. 48(C), pages 111-130.
    16. Chen Tong & Zhuo Huang & Tianyi Wang, 2022. "Do VIX futures contribute to the valuation of VIX options?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(9), pages 1644-1664, September.
    17. Kaeck, Andreas & Alexander, Carol, 2013. "Continuous-time VIX dynamics: On the role of stochastic volatility of volatility," International Review of Financial Analysis, Elsevier, vol. 28(C), pages 46-56.
    18. Dotsis, George & Psychoyios, Dimitris & Skiadopoulos, George, 2007. "An empirical comparison of continuous-time models of implied volatility indices," Journal of Banking & Finance, Elsevier, vol. 31(12), pages 3584-3603, December.
    19. Pacati, Claudio & Pompa, Gabriele & Renò, Roberto, 2018. "Smiling twice: The Heston++ model," Journal of Banking & Finance, Elsevier, vol. 96(C), pages 185-206.
    20. Bujar Huskaj & Marcus Nossman, 2013. "A Term Structure Model for VIX Futures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 33(5), pages 421-442, May.

    More about this item

    Keywords

    VIX; VIX Future; VIX Option; Forward Variance Swap; VIX Implied Volatility Skew; MRLR Model; Jump-Diffusion; Stochastic Volatility.;
    All these keywords.

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:46413. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.