IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/4042.html
   My bibliography  Save this paper

A real-time recession indicator for the Euro area

Author

Listed:
  • Ferrara, Laurent

Abstract

In this paper, we propose a new coincident monthly indicator to detect in real-time the start and the end of an economic recession phase for the Euro area. In this respect, we use the methodology proposed in Anas and Ferrara (2002, 2004) as regards the recession indicator for the US, based on Markov-Switching processes popularized in economics by Hamilton (1989). By using a set of four monthly time series, we show that this start-end recession indicator (SERI) is able to reproduce all the recession phases experienced by the Euro area since 1970. Concerning the last low phase of the growth cycle in the Euro area, started in 2001, empirical results show that the Euro area experienced a « quasi-recession » phase, located between the end of the 2001 year and the beginning of 2002, without a global recession. This is due to a lack of diffusion of this phenomena among the main Eurozone countries, though it was synchronized.

Suggested Citation

  • Ferrara, Laurent, 2006. "A real-time recession indicator for the Euro area," MPRA Paper 4042, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:4042
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/4042/1/MPRA_paper_4042.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Allan Layton & Daniel Smith, 2000. "A further note on the three phases of the US business cycle," Applied Economics, Taylor & Francis Journals, vol. 32(9), pages 1133-1143.
    2. Krolzig, H.-M. & Toro, J., 1999. "A New Approach to the Analysis of Shocks and the Cycle in a Model of Output and Employment," Economics Working Papers eco99/30, European University Institute.
    3. Camacho, Maximo & Perez-Quiros, Gabriel & Saiz, Lorena, 2008. "Do European business cycles look like one?," Journal of Economic Dynamics and Control, Elsevier, vol. 32(7), pages 2165-2190, July.
    4. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    5. Hamilton, James D., 1996. "Specification testing in Markov-switching time-series models," Journal of Econometrics, Elsevier, vol. 70(1), pages 127-157, January.
    6. Sichel, Daniel E, 1994. "Inventories and the Three Phases of the Business Cycle," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(3), pages 269-277, July.
    7. Nigel Pain & Franck Sédillot, 2006. "Indicator models of real GDP growth in the major OECD economies," OECD Economic Studies, OECD Publishing, vol. 2005(1), pages 167-217.
    8. Pilar Bengoechea & Gabriel Pérez Quirós, 2004. "A useful tool to identify recessions in the euro area," European Economy - Economic Papers 2008 - 2015 215, Directorate General Economic and Financial Affairs (DG ECFIN), European Commission.
    9. Hansen, Bruce E, 1996. "Erratum: The Likelihood Ratio Test under Nonstandard Conditions: Testing the Markov Switching Model of GNP," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(2), pages 195-198, March-Apr.
    10. Garcia, Rene, 1998. "Asymptotic Null Distribution of the Likelihood Ratio Test in Markov Switching Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(3), pages 763-788, August.
    11. Marcelle Chauvet & Jeremy M. Piger, 2003. "Identifying business cycle turning points in real time," Review, Federal Reserve Bank of St. Louis, vol. 85(Mar), pages 47-61.
    12. Clements, Michael P & Krolzig, Hans-Martin, 2003. "Business Cycle Asymmetries: Characterization and Testing Based on Markov-Switching Autoregressions," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(1), pages 196-211, January.
    13. Perron, Pierre, 1997. "Further evidence on breaking trend functions in macroeconomic variables," Journal of Econometrics, Elsevier, vol. 80(2), pages 355-385, October.
    14. Jacques Anas & Laurent Ferrara, 2004. "Detecting Cyclical Turning Points: The ABCD Approach and Two Probabilistic Indicators," Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2004(2), pages 193-225.
    15. Arthur F. Burns & Wesley C. Mitchell, 1946. "Measuring Business Cycles," NBER Books, National Bureau of Economic Research, Inc, number burn46-1, June.
    16. Laurent Ferrara, 2007. "Point and interval nowcasts of the Euro area IPI," Applied Economics Letters, Taylor & Francis Journals, vol. 14(2), pages 115-120.
    17. Anas, Jacques & Ferrara, Laurent, 2002. "Un indicateur d'entrée et sortie de récession: application aux Etats-Unis [A start-end recession index: Application for United-States]," MPRA Paper 4043, University Library of Munich, Germany.
    18. Peter Grasmann & Filip Keereman, 2001. "An indicator-based short-term forecast for quarterly GDP in the euro area," European Economy - Economic Papers 2008 - 2015 154, Directorate General Economic and Financial Affairs (DG ECFIN), European Commission.
    19. Ferrara, Laurent, 2003. "A three-regime real-time indicator for the US economy," Economics Letters, Elsevier, vol. 81(3), pages 373-378, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ferrara, Laurent, 2003. "A three-regime real-time indicator for the US economy," Economics Letters, Elsevier, vol. 81(3), pages 373-378, December.
    2. Olivier Darné & Laurent Ferrara, 2011. "Identification of Slowdowns and Accelerations for the Euro Area Economy," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 73(3), pages 335-364, June.
    3. Monica Billio & Jacques Anas & Laurent Ferrara & Marco Lo Duca, 2007. "A turning point chronology for the Euro-zone," Working Papers 2007_33, Department of Economics, University of Venice "Ca' Foscari".
    4. Charles, Amélie & Darné, Olivier & Diebolt, Claude & Ferrara, Laurent, 2015. "A new monthly chronology of the US industrial cycles in the prewar economy," Journal of Financial Stability, Elsevier, vol. 17(C), pages 3-9.
    5. Charlotte Le Chapelain, 2012. "Allocation des talents et accumulation de capital humain en France à la fin du XIXe siècle," Working Papers 12-03, Association Française de Cliométrie (AFC).
    6. James Morley & Jeremy Piger, 2006. "The Importance of Nonlinearity in Reproducing Business Cycle Features," Contributions to Economic Analysis, in: Nonlinear Time Series Analysis of Business Cycles, pages 75-95, Emerald Group Publishing Limited.
    7. Igor Alexandre Clemente de Morais & Marcelo Savino Portugal, 2003. "Business Cycle in the Industrial Production of Brazilian States," Anais do XXXI Encontro Nacional de Economia [Proceedings of the 31st Brazilian Economics Meeting] e75, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
    8. Jacques Anas & Monica Billio & Laurent Ferrara & Gian Luigi Mazzi, 2008. "A System For Dating And Detecting Turning Points In The Euro Area," Manchester School, University of Manchester, vol. 76(5), pages 549-577, September.
    9. Sumru Altug & Melike Bildirici, 2010. "Business Cycles around the Globe: A Regime Switching Approach," Koç University-TUSIAD Economic Research Forum Working Papers 1009, Koc University-TUSIAD Economic Research Forum.
    10. Benoît Bellone & Erwan Gautier & Sébastien Le Coent, 2006. "Les marchés financiers anticipent-ils les retournements conjoncturels ?," Economie & Prévision, La Documentation Française, vol. 172(1), pages 83-99.
    11. Laurent Ferrara & Dominique Guégan, 2006. "Detection of the Industrial Business Cycle using SETAR Models," Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2005(3), pages 353-371.
    12. Marie Adanero-Donderis & Olivier Darné & Laurent Ferrara, 2009. "Un indicateur probabiliste du cycle d’accélération pour l’économie française," Économie et Prévision, Programme National Persée, vol. 189(3), pages 95-114.
    13. Benoît Bellone, 2006. "Une lecture probabiliste du cycle d’affaires américain," Économie et Prévision, Programme National Persée, vol. 172(1), pages 63-81.
    14. Amélie Charles & Olivier Darné & Claude Diebolt & Laurent Ferrara, 2012. "A new monthly chronology of the US industrial cycles in the prewar economy," Working Papers hal-00693342, HAL.
    15. Benoit Bellone, 2004. "Une lecture probabiliste du cycle d’affaires américain," Econometrics 0407002, University Library of Munich, Germany, revised 28 Mar 2005.
    16. Kamel Helali, 2022. "Markov Switching-Vector AutoRegression Model Analysis of the Economic and Growth Cycles in Tunisia and Its Main European Partners," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 13(1), pages 656-686, March.
    17. Imed Medhioub, 2010. "Business Cycle Synchronization: A Mediterranean Comparison," Working Papers 527, Economic Research Forum, revised 06 Jan 2010.
    18. Adanero-Donderis , M. & Darné, O. & Ferrara, L., 2007. "Deux indicateurs probabilistes de retournement cyclique pour l’économie française," Working papers 187, Banque de France.
    19. Chen, Shyh-Wei, 2007. "Measuring business cycle turning points in Japan with the Markov Switching Panel model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 76(4), pages 263-270.
    20. Benoit Bellone & David Saint-Martin, 2004. "Detecting Turning Points with Many Predictors through Hidden Markov Models," Econometrics 0407001, University Library of Munich, Germany.

    More about this item

    Keywords

    Recession; real-time; probabilistic indicator; Euro area;
    All these keywords.

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:4042. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.