IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/34216.html
   My bibliography  Save this paper

The investments in renewable energy sources: do low carbon economies better invest in green technologies?

Author

Listed:
  • Scandurra, Giuseppe
  • Romano, Antonio Angelo

Abstract

The aim of this study is to analyse the driving of investment in renewable energy sources in low carbon and high carbon economies. To address these issues, a dynamic panel analysis of the renewable investment in a sample of 29 countries was proposed. Results demonstrate that the dynamic of investments in renewable sources is similar in the two panels, and depends by nuclear power generation, GDP and technological efficiency. Results show that countries try to reduce their environmental footprint, decreasing the CO2 intensity . Based on the estimation results, we think that energy sustainability passes through the use of renewable resources that can complement the nuclear technology on condition that both exceed their limits.

Suggested Citation

  • Scandurra, Giuseppe & Romano, Antonio Angelo, 2011. "The investments in renewable energy sources: do low carbon economies better invest in green technologies?," MPRA Paper 34216, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:34216
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/34216/2/MPRA_paper_34216.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ghanadan, Rebecca & Koomey, Jonathan G., 2005. "Using energy scenarios to explore alternative energy pathways in California," Energy Policy, Elsevier, vol. 33(9), pages 1117-1142, June.
    2. Susana Silva & Isabel Soares & Carlos Pinho, 2011. "The impact of renewable energy sources on economic growth and CO2 emissions - a SVAR approach," FEP Working Papers 407, Universidade do Porto, Faculdade de Economia do Porto.
    3. Menz, Fredric C. & Vachon, Stephan, 2006. "The effectiveness of different policy regimes for promoting wind power: Experiences from the states," Energy Policy, Elsevier, vol. 34(14), pages 1786-1796, September.
    4. Sari, Ramazan & Soytas, Ugur, 2004. "Disaggregate energy consumption, employment and income in Turkey," Energy Economics, Elsevier, vol. 26(3), pages 335-344, May.
    5. Carley, Sanya, 2009. "State renewable energy electricity policies: An empirical evaluation of effectiveness," Energy Policy, Elsevier, vol. 37(8), pages 3071-3081, August.
    6. Marques, António C. & Fuinhas, José A. & Pires Manso, J.R., 2010. "Motivations driving renewable energy in European countries: A panel data approach," Energy Policy, Elsevier, vol. 38(11), pages 6877-6885, November.
    7. Verbruggen, Aviel, 2008. "Renewable and nuclear power: A common future?," Energy Policy, Elsevier, vol. 36(11), pages 4036-4047, November.
    8. Afgan, Naim H. & Carvalho, Maria G., 2002. "Multi-criteria assessment of new and renewable energy power plants," Energy, Elsevier, vol. 27(8), pages 739-755.
    9. Lund, Henrik, 1999. "Implementation of energy-conservation policies: the case of electric heating conversion in Denmark," Applied Energy, Elsevier, vol. 64(1-4), pages 117-127, September.
    10. Apergis, Nicholas & Payne, James E., 2010. "A panel study of nuclear energy consumption and economic growth," Energy Economics, Elsevier, vol. 32(3), pages 545-549, May.
    11. Ewing, Bradley T. & Sari, Ramazan & Soytas, Ugur, 2007. "Disaggregate energy consumption and industrial output in the United States," Energy Policy, Elsevier, vol. 35(2), pages 1274-1281, February.
    12. Sadorsky, Perry, 2009. "Renewable energy consumption, CO2 emissions and oil prices in the G7 countries," Energy Economics, Elsevier, vol. 31(3), pages 456-462, May.
    13. Blok, Kornelis, 2005. "Enhanced policies for the improvement of electricity efficiencies," Energy Policy, Elsevier, vol. 33(13), pages 1635-1641, September.
    14. Bird, Lori & Bolinger, Mark & Gagliano, Troy & Wiser, Ryan & Brown, Matthew & Parsons, Brian, 2005. "Policies and market factors driving wind power development in the United States," Energy Policy, Elsevier, vol. 33(11), pages 1397-1407, July.
    15. Li, Xianguo, 2005. "Diversification and localization of energy systems for sustainable development and energy security," Energy Policy, Elsevier, vol. 33(17), pages 2237-2243, November.
    16. Lund, Henrik, 2010. "The implementation of renewable energy systems. Lessons learned from the Danish case," Energy, Elsevier, vol. 35(10), pages 4003-4009.
    17. Lofstedt, Ragnar, 2008. "Are renewables an alternative to nuclear power? An analysis of the Austria/Slovakia discussions," Energy Policy, Elsevier, vol. 36(6), pages 2226-2233, June.
    18. Soytas, Ugur & Sari, Ramazan, 2009. "Energy consumption, economic growth, and carbon emissions: Challenges faced by an EU candidate member," Ecological Economics, Elsevier, vol. 68(6), pages 1667-1675, April.
    19. Mark K. Jaccard & John Nyboer & Crhis Bataille & Bryn Sadownik, 2003. "Modeling the Cost of Climate Policy: Distinguishing Between Alternative Cost Definitions and Long-Run Cost Dynamics," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 49-73.
    20. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(2), pages 277-297.
    21. Cédric Philibert, 2011. "Interactions of Policies for Renewable Energy and Climate," IEA Energy Papers 2011/6, OECD Publishing.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bourcet, Clémence, 2020. "Empirical determinants of renewable energy deployment: A systematic literature review," Energy Economics, Elsevier, vol. 85(C).
    2. Wadim Strielkowski & Michal Mirvald & Michael Pedersen, 2014. "Energy Integration in European Power Sector," International Journal of Energy Economics and Policy, Econjournals, vol. 4(4), pages 506-515.
    3. Cicea, Claudiu & Marinescu, Corina & Popa, Ion & Dobrin, Cosmin, 2014. "Environmental efficiency of investments in renewable energy: Comparative analysis at macroeconomic level," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 555-564.
    4. kos Hamburger & G bor Harangoz, 2018. "Factors Affecting the Evolution of Renewable Electricity Generating Capacities: A Panel Data Analysis of European Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 8(5), pages 161-172.
    5. Zhao, Yong & Tang, Kam Ki & Wang, Li-li, 2013. "Do renewable electricity policies promote renewable electricity generation? Evidence from panel data," Energy Policy, Elsevier, vol. 62(C), pages 887-897.
    6. Raghid Farhat & Nesreen K. Ghaddar & Kamel Ghali, 2014. "Investing in PV Systems utilizing Savings from Building Envelop Replacement by Sustainable Local Material: A Case Study in Lebanese Inland Region," International Journal of Energy Economics and Policy, Econjournals, vol. 4(4), pages 554-567.
    7. Kahia, Montassar & Ben Aissa, Mohamed Safouane & kadria, Mohamed, 2014. "Do renewable energy policies promote economic growth? A nonparametric approach," MPRA Paper 80751, University Library of Munich, Germany.
    8. Wadim Strielkowski & tep n Kr ka & Evgeny Lisin, 2013. "Energy Economics and Policy of Renewable Energy Sources in the European Union," International Journal of Energy Economics and Policy, Econjournals, vol. 3(4), pages 333-340.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antonio Angelo Romano & Giuseppe Scandurra, 2011. "The Investments in Renewable Energy Sources: Do Low Carbon Economies Better Invest In Green Technologies?," International Journal of Energy Economics and Policy, Econjournals, vol. 1(4), pages 107-115.
    2. Biresselioglu, Mehmet Efe & Kilinc, Dilara & Onater-Isberk, Esra & Yelkenci, Tezer, 2016. "Estimating the political, economic and environmental factors’ impact on the installed wind capacity development: A system GMM approach," Renewable Energy, Elsevier, vol. 96(PA), pages 636-644.
    3. Lund, H. & Mathiesen, B.V., 2009. "Energy system analysis of 100% renewable energy systems—The case of Denmark in years 2030 and 2050," Energy, Elsevier, vol. 34(5), pages 524-531.
    4. Alessandro Marra & Emiliano Colantonio, 2022. "The institutional and socio-technical determinants of renewable energy production in the EU: implications for policy," Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 49(2), pages 267-299, June.
    5. Zhao, Yong & Tang, Kam Ki & Wang, Li-li, 2013. "Do renewable electricity policies promote renewable electricity generation? Evidence from panel data," Energy Policy, Elsevier, vol. 62(C), pages 887-897.
    6. Husain, Shaiara & Sohag, Kazi & Wu, Yanrui, 2024. "Proven reserve oil and renewable energy nexus: Efficacy of policy stringency," Resources Policy, Elsevier, vol. 90(C).
    7. Lin, Boqiang & Omoju, Oluwasola E. & Okonkwo, Jennifer U., 2016. "Factors influencing renewable electricity consumption in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 687-696.
    8. Aguirre, Mariana & Ibikunle, Gbenga, 2014. "Determinants of renewable energy growth: A global sample analysis," Energy Policy, Elsevier, vol. 69(C), pages 374-384.
    9. Nurcan Kilinc-Ata, 2018. "Assessing the Future of Renewable Energy Consumption for United Kingdom, Turkey and Nigeria," Foresight and STI Governance (Foresight-Russia till No. 3/2015), National Research University Higher School of Economics, vol. 12(4), pages 62-77.
    10. Lund, Henrik, 2010. "The implementation of renewable energy systems. Lessons learned from the Danish case," Energy, Elsevier, vol. 35(10), pages 4003-4009.
    11. Marques, António Cardoso & Fuinhas, José Alberto, 2011. "Drivers promoting renewable energy: A dynamic panel approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1601-1608, April.
    12. Aviral Kumar Tiwari, 2011. "A structural VAR analysis of renewable energy consumption, real GDP and CO2 emissions: Evidence from India," Economics Bulletin, AccessEcon, vol. 31(2), pages 1793-1806.
    13. Lund, Henrik, 2007. "Renewable energy strategies for sustainable development," Energy, Elsevier, vol. 32(6), pages 912-919.
    14. Schumacher, Kim & Yang, Zhuoxiang, 2018. "The determinants of wind energy growth in the United States: Drivers and barriers to state-level development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 1-13.
    15. Magnani, Natalia & Vaona, Andrea, 2013. "Regional spillover effects of renewable energy generation in Italy," Energy Policy, Elsevier, vol. 56(C), pages 663-671.
    16. Ibrahiem, Dalia M. & Hanafy, Shaimaa A., 2021. "Do energy security and environmental quality contribute to renewable energy? The role of trade openness and energy use in North African countries," Renewable Energy, Elsevier, vol. 179(C), pages 667-678.
    17. Gosens, Jorrit, 2017. "Natural resource endowment is not a strong driver of wind or PV development," Renewable Energy, Elsevier, vol. 113(C), pages 1007-1018.
    18. Sofien, Tiba & Omri, Anis, 2016. "Literature survey on the relationships between energy variables, environment and economic growth," MPRA Paper 82555, University Library of Munich, Germany, revised 14 Sep 2016.
    19. repec:ers:journl:v:xv:y:2012:i:sie:p:133-144 is not listed on IDEAS
    20. Carfora, A. & Pansini, R.V. & Scandurra, G., 2021. "The role of environmental taxes and public policies in supporting RES investments in EU countries: Barriers and mimicking effects," Energy Policy, Elsevier, vol. 149(C).
    21. Mac Domhnaill, Ciarán & Ryan, Lisa, 2020. "Towards renewable electricity in Europe: Revisiting the determinants of renewable electricity in the European Union," Renewable Energy, Elsevier, vol. 154(C), pages 955-965.

    More about this item

    Keywords

    CO2 intensity; Dynamic model; Nuclear Energy;
    All these keywords.

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:34216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.