Forecasting seasonality in prices of potatoes and onions: challenge between geostatistical models, neuro fuzzy approach and Winter method
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Zou, Hui & Yang, Yuhong, 2004. "Combining time series models for forecasting," International Journal of Forecasting, Elsevier, vol. 20(1), pages 69-84.
- Taylor, James W., 2003. "Exponential smoothing with a damped multiplicative trend," International Journal of Forecasting, Elsevier, vol. 19(4), pages 715-725.
- J. Scott Armstrong & Kesten C. Green, 2005. "Demand Forecasting: Evidence-based Methods," Monash Econometrics and Business Statistics Working Papers 24/05, Monash University, Department of Econometrics and Business Statistics.
- Granger, C. W. J. & Newbold, P., 1976. "The use of R2 to determine the appropriate transformation of regression variables," Journal of Econometrics, Elsevier, vol. 4(3), pages 205-210, August.
- Hill, Tim & Marquez, Leorey & O'Connor, Marcus & Remus, William, 1994. "Artificial neural network models for forecasting and decision making," International Journal of Forecasting, Elsevier, vol. 10(1), pages 5-15, June.
- Joutz, Frederick L. & Trost, Robert P. & Hallahan, Charles B. & Clauson, Annette L. & Denbaly, Mark, 2000. "Retail Food Price Forecasting At Ers: The Process, Methodology, And Performance From 1984 To 1997," Technical Bulletins 33575, United States Department of Agriculture, Economic Research Service.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
- Jan G. De Gooijer & Rob J. Hyndman, 2005.
"25 Years of IIF Time Series Forecasting: A Selective Review,"
Monash Econometrics and Business Statistics Working Papers
12/05, Monash University, Department of Econometrics and Business Statistics.
- Jan G. de Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Tinbergen Institute Discussion Papers 05-068/4, Tinbergen Institute.
- Arshia Amiri & Ulf-G Gerdtham, 2012.
"Granger Causality Between Exports, Imports and GDP in France: Evidance from Using Geostatistical Models,"
Economic Research Guardian, Weissberg Publishing, vol. 2(1), pages 43-59, May.
- Amiri, Arshia & Gerdtham, Ulf-G, 2011. "Relationship between exports, imports, and economic growth in France: evidence from cointegration analysis and Granger causality with using geostatistical models," MPRA Paper 34190, University Library of Munich, Germany.
- Amiri, Arshia & Zibaei, Mansour, 2012. "Granger causality between energy use and economic growth in France with using geostatistical models," MPRA Paper 36357, University Library of Munich, Germany.
- Prybutok, Victor R. & Yi, Junsub & Mitchell, David, 2000. "Comparison of neural network models with ARIMA and regression models for prediction of Houston's daily maximum ozone concentrations," European Journal of Operational Research, Elsevier, vol. 122(1), pages 31-40, April.
- C, Deep Prakash & Majumdar, Adrija, 2023. "Predicting sports fans’ engagement with culturally aligned social media content: A language expectancy perspective," Journal of Retailing and Consumer Services, Elsevier, vol. 75(C).
- P. Velumani & N. V. N. Nampoothiri & M. Urbański, 2021. "A Comparative Study of Models for the Construction Duration Prediction in Highway Road Projects of India," Sustainability, MDPI, vol. 13(8), pages 1-13, April.
- Marie Bessec & Julien Fouquau & Sophie Meritet, 2016.
"Forecasting electricity spot prices using time-series models with a double temporal segmentation,"
Applied Economics, Taylor & Francis Journals, vol. 48(5), pages 361-378, January.
- Marie Bessec & Julien Fouquau & Sophie Méritet, 2014. "Forecasting electricity spot prices using time-series models with a double temporal segmentation," Post-Print hal-01502835, HAL.
- Marie Bessec & Julien Fouquau & Sophie Meritet, 2016. "Forecasting electricity spot prices using time-series models with a double temporal segmentation," Post-Print hal-01276807, HAL.
- Marie Bessec & Julien Fouquau & Sophie Meritet, 2014. "Forecasting electricity spot prices using time-series models with a double temporal segmentation," Working Papers 2014-588, Department of Research, Ipag Business School.
- Kourentzes, Nikolaos & Petropoulos, Fotios & Trapero, Juan R., 2014. "Improving forecasting by estimating time series structural components across multiple frequencies," International Journal of Forecasting, Elsevier, vol. 30(2), pages 291-302.
- Leung, Philip C.M. & Lee, Eric W.M., 2013. "Estimation of electrical power consumption in subway station design by intelligent approach," Applied Energy, Elsevier, vol. 101(C), pages 634-643.
- Madina D. Sharapiyeva & Kunanbayeva Duissekul & Nurseiytova Gulmira & Kozhamkulova Zhanna, 2019. "Energy Efficiency of Transport and Logistics Infrastructure: The Example of the Republic of Kazakhstan," International Journal of Energy Economics and Policy, Econjournals, vol. 9(5), pages 331-338.
- de Silva, Ashton J, 2010. "Forecasting Australian Macroeconomic variables, evaluating innovations state space approaches," MPRA Paper 27411, University Library of Munich, Germany.
- Chatfield, Chris, 1995. "Positive or negative?," International Journal of Forecasting, Elsevier, vol. 11(4), pages 501-502, December.
- Oscar Claveria & Salvador Torra, 2013.
"“Forecasting Business surveys indicators: neural networks vs. time series models”,"
AQR Working Papers
201312, University of Barcelona, Regional Quantitative Analysis Group, revised Nov 2013.
- Oscar Claveria & Salvador Torra, 2013. "“Forecasting Business surveys indicators: neural networks vs. time series models”," IREA Working Papers 201320, University of Barcelona, Research Institute of Applied Economics, revised Nov 2013.
- Niematallah Elamin & Mototsugu Fukushige, 2016. "Forecasting extreme seasonal tourism demand," Discussion Papers in Economics and Business 16-23, Osaka University, Graduate School of Economics.
- Hyndman, Rob J. & Khandakar, Yeasmin, 2008.
"Automatic Time Series Forecasting: The forecast Package for R,"
Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
- Rob J. Hyndman & Yeasmin Khandakar, 2007. "Automatic time series forecasting: the forecast package for R," Monash Econometrics and Business Statistics Working Papers 6/07, Monash University, Department of Econometrics and Business Statistics.
- Thomassey, Sebastien & Happiette, Michel & Castelain, Jean Marie, 2005. "A short and mean-term automatic forecasting system--application to textile logistics," European Journal of Operational Research, Elsevier, vol. 161(1), pages 275-284, February.
- Bobinaite Viktorija & Zuters Jānis, 2016. "Modelling Electricity Price Expectations in a Day-Ahead Market: A Case of Latvia," Economics and Business, Sciendo, vol. 29(1), pages 12-26, August.
- E. Vercher & A. Corberán-Vallet & J. Segura & J. Bermúdez, 2012. "Initial conditions estimation for improving forecast accuracy in exponential smoothing," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 517-533, July.
- Hanyuan Zhang & Jiangping Lu, 2022. "Forecasting hotel room demand amid COVID-19," Tourism Economics, , vol. 28(1), pages 200-221, February.
More about this item
Keywords
Price; Geostatistical model; Kiriging; Inverse distance weighting; Winter’s method; Adaptive neuro fuzzy inference system; Potatoes; Onions; Iran;All these keywords.
JEL classification:
- Q1 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
NEP fields
This paper has been announced in the following NEP Reports:- NEP-CIS-2011-10-22 (Confederation of Independent States)
- NEP-CMP-2011-10-22 (Computational Economics)
- NEP-FOR-2011-10-22 (Forecasting)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:34093. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.