IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/26718.html
   My bibliography  Save this paper

A Forecasting Metric for Evaluating DSGE Models for Policy Analysis

Author

Listed:
  • Gupta, Abhishek

Abstract

This paper evaluates the strengths and weaknesses of dynamic stochastic general equilibrium (DSGE) models from the standpoint of their usefulness in doing monetary policy analysis. The paper isolates features most relevant for monetary policymaking and uses the diagnostic tools of posterior predictive analysis to evaluate these features. The paper provides a diagnosis of the observed flaws in the model with regards to these features that helps in identifying the structural flaws in the model. The paper finds that model misspecification causes certain pairs of structural shocks in the model to be correlated in order to fit the observed data.

Suggested Citation

  • Gupta, Abhishek, 2010. "A Forecasting Metric for Evaluating DSGE Models for Policy Analysis," MPRA Paper 26718, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:26718
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/26718/1/MPRA_paper_26718.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Faust, Jon & Gupta, Abhishek, 2010. "Posterior Predictive Analysis for Evaluating DSGE Models," MPRA Paper 26721, University Library of Munich, Germany.
    2. Finn E. Kydland & Edward C. Prescott, 1996. "The Computational Experiment: An Econometric Tool," Journal of Economic Perspectives, American Economic Association, vol. 10(1), pages 69-85, Winter.
    3. Hansen, Bruce E., 2005. "Challenges For Econometric Model Selection," Econometric Theory, Cambridge University Press, vol. 21(1), pages 60-68, February.
    4. Malin Adolfson & Michael K. Andersson & Jesper Lindé & Mattias Villani & Anders Vredin, 2007. "Modern Forecasting Models in Action: Improving Macroeconomic Analyses at Central Banks," International Journal of Central Banking, International Journal of Central Banking, vol. 3(4), pages 111-144, December.
    5. Del Negro, Marco & Schorfheide, Frank & Smets, Frank & Wouters, Rafael, 2007. "On the Fit of New Keynesian Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 123-143, April.
    6. Lawrence J. Christiano & Martin Eichenbaum & Charles L. Evans, 2005. "Nominal Rigidities and the Dynamic Effects of a Shock to Monetary Policy," Journal of Political Economy, University of Chicago Press, vol. 113(1), pages 1-45, February.
    7. Rochelle M. Edge & Michael T. Kiley & Jean-Philippe Laforte, 2010. "A comparison of forecast performance between Federal Reserve staff forecasts, simple reduced-form models, and a DSGE model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 720-754.
    8. Calvo, Guillermo A., 1983. "Staggered prices in a utility-maximizing framework," Journal of Monetary Economics, Elsevier, vol. 12(3), pages 383-398, September.
    9. Frank Smets & Raf Wouters, 2004. "Forecasting with a Bayesian DSGE Model: An Application to the Euro Area," Journal of Common Market Studies, Wiley Blackwell, vol. 42(4), pages 841-867, November.
    10. Frank Smets & Rafael Wouters, 2007. "Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach," American Economic Review, American Economic Association, vol. 97(3), pages 586-606, June.
    11. John Geweke, 2007. "Bayesian Model Comparison and Validation," American Economic Review, American Economic Association, vol. 97(2), pages 60-64, May.
    12. Edge, Rochelle M. & Kiley, Michael T. & Laforte, Jean-Philippe, 2008. "Natural rate measures in an estimated DSGE model of the U.S. economy," Journal of Economic Dynamics and Control, Elsevier, vol. 32(8), pages 2512-2535, August.
    13. Frank Smets & Raf Wouters, 2003. "An Estimated Dynamic Stochastic General Equilibrium Model of the Euro Area," Journal of the European Economic Association, MIT Press, vol. 1(5), pages 1123-1175, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. John B. Taylor & Volker Wieland, 2012. "Surprising Comparative Properties of Monetary Models: Results from a New Model Database," The Review of Economics and Statistics, MIT Press, vol. 94(3), pages 800-816, August.
    2. Faust, Jon & Gupta, Abhishek, 2010. "Posterior Predictive Analysis for Evaluating DSGE Models," MPRA Paper 26721, University Library of Munich, Germany.
    3. Jon Faust, 2012. "DSGE Models: I Smell a Rat (and It Smells Good)," International Journal of Central Banking, International Journal of Central Banking, vol. 8(1), pages 53-64, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Volker Wieland & Maik Wolters, 2011. "The diversity of forecasts from macroeconomic models of the US economy," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 47(2), pages 247-292, June.
    2. Schorfheide, Frank & Sill, Keith & Kryshko, Maxym, 2010. "DSGE model-based forecasting of non-modelled variables," International Journal of Forecasting, Elsevier, vol. 26(2), pages 348-373, April.
    3. Wieland, Volker & Wolters, Maik, 2013. "Forecasting and Policy Making," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 239-325, Elsevier.
    4. Bekiros Stelios & Paccagnini Alessia, 2015. "Estimating point and density forecasts for the US economy with a factor-augmented vector autoregressive DSGE model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(2), pages 107-136, April.
    5. Maik H. Wolters, 2015. "Evaluating Point and Density Forecasts of DSGE Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(1), pages 74-96, January.
    6. Warne, Anders & Coenen, Günter & Christoffel, Kai, 2008. "The new area-wide model of the euro area: a micro-founded open-economy model for forecasting and policy analysis," Working Paper Series 944, European Central Bank.
    7. Negro, Marco Del & Schorfheide, Frank, 2013. "DSGE Model-Based Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 57-140, Elsevier.
    8. Faust, Jon & Gupta, Abhishek, 2010. "Posterior Predictive Analysis for Evaluating DSGE Models," MPRA Paper 26721, University Library of Munich, Germany.
    9. Lindé, Jesper & Smets, Frank & Wouters, Rafael, 2016. "Challenges for Central Banks´ Macro Models," Working Paper Series 323, Sveriges Riksbank (Central Bank of Sweden).
    10. Ana Beatriz Galvão & Liudas Giraitis & George Kapetanios & Katerina Petrova, 2015. "A Bayesian Local Likelihood Method for Modelling Parameter Time Variation in DSGE Models," Working Papers 770, Queen Mary University of London, School of Economics and Finance.
    11. Adolfson, Malin & Laséen, Stefan & Lindé, Jesper & Villani, Mattias, 2008. "Evaluating an estimated new Keynesian small open economy model," Journal of Economic Dynamics and Control, Elsevier, vol. 32(8), pages 2690-2721, August.
    12. Marcin Kolasa & Michał Rubaszek & Paweł Skrzypczyński, 2012. "Putting the New Keynesian DSGE Model to the Real‐Time Forecasting Test," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(7), pages 1301-1324, October.
    13. Bekiros, Stelios D. & Paccagnini, Alessia, 2014. "Bayesian forecasting with small and medium scale factor-augmented vector autoregressive DSGE models," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 298-323.
    14. YANO Koiti, 2010. "Time-varying Analysis of Dynamic Stochastic General Equilibrium Models Based on Sequential Monte Carlo Methods," ESRI Discussion paper series 231, Economic and Social Research Institute (ESRI).
    15. Rochelle M. Edge & Refet S. Gürkaynak, 2011. "How useful are estimated DSGE model forecasts?," Finance and Economics Discussion Series 2011-11, Board of Governors of the Federal Reserve System (U.S.).
    16. Görtz, Christoph & Tsoukalas, John, 2011. "News and financial intermediation in aggregate and sectoral fluctuations," MPRA Paper 38986, University Library of Munich, Germany, revised Mar 2012.
    17. Rochelle M. Edge & Refet S. Gurkaynak, 2010. "How Useful Are Estimated DSGE Model Forecasts for Central Bankers?," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 41(2 (Fall)), pages 209-259.
    18. Herbst, Edward & Schorfheide, Frank, 2012. "Evaluating DSGE model forecasts of comovements," Journal of Econometrics, Elsevier, vol. 171(2), pages 152-166.
    19. Schmidt, Sebastian & Wieland, Volker, 2013. "The New Keynesian Approach to Dynamic General Equilibrium Modeling: Models, Methods and Macroeconomic Policy Evaluation," Handbook of Computable General Equilibrium Modeling, in: Peter B. Dixon & Dale Jorgenson (ed.), Handbook of Computable General Equilibrium Modeling, edition 1, volume 1, chapter 0, pages 1439-1512, Elsevier.
    20. Mr. Maxym Kryshko, 2011. "Data-Rich DSGE and Dynamic Factor Models," IMF Working Papers 2011/216, International Monetary Fund.

    More about this item

    Keywords

    Posterior predictive analysis; DSGE; Monetary Policy; Forecast Errors; Model Evaluation.;
    All these keywords.

    JEL classification:

    • E58 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Central Banks and Their Policies
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • E1 - Macroeconomics and Monetary Economics - - General Aggregative Models
    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:26718. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.