IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v26yi2p348-373.html
   My bibliography  Save this article

DSGE model-based forecasting of non-modelled variables

Author

Listed:
  • Schorfheide, Frank
  • Sill, Keith
  • Kryshko, Maxym

Abstract

This paper develops and illustrates a simple method of generating a DSGE model-based forecast for variables that do not explicitly appear in the model (non-core variables). We use auxiliary regressions that resemble measurement equations in a dynamic factor model to link the non-core variables to the state variables of the DSGE model. Predictions for the non-core variables are obtained by applying their measurement equations to DSGE model-generated forecasts of the state variables. Using a medium-scale New Keynesian DSGE model, we apply our approach to generate and evaluate recursive forecasts for PCE inflation, core PCE inflation, the unemployment rate, and housing starts, along with predictions for the seven variables that have been used to estimate the DSGE model.

Suggested Citation

  • Schorfheide, Frank & Sill, Keith & Kryshko, Maxym, 2010. "DSGE model-based forecasting of non-modelled variables," International Journal of Forecasting, Elsevier, vol. 26(2), pages 348-373, April.
  • Handle: RePEc:eee:intfor:v:26:y::i:2:p:348-373
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169-2070(09)00211-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Sungbae An & Frank Schorfheide, 2007. "Bayesian Analysis of DSGE Models—Rejoinder," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 211-219.
    2. Yongsung Chang & Sun-Bin Kim, 2006. "From Individual To Aggregate Labor Supply: A Quantitative Analysis Based On A Heterogeneous Agent Macroeconomy ," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 47(1), pages 1-27, February.
    3. Del Negro, Marco & Schorfheide, Frank, 2008. "Forming priors for DSGE models (and how it affects the assessment of nominal rigidities)," Journal of Monetary Economics, Elsevier, vol. 55(7), pages 1191-1208, October.
    4. Francesca Monti, 2008. "Forecast with judgment and models," Working Paper Research 153, National Bank of Belgium.
    5. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    6. Malin Adolfson & Michael K. Andersson & Jesper Lindé & Mattias Villani & Anders Vredin, 2007. "Modern Forecasting Models in Action: Improving Macroeconomic Analyses at Central Banks," International Journal of Central Banking, International Journal of Central Banking, vol. 3(4), pages 111-144, December.
    7. Lawrence J. Christiano & Michele Boldrin & Jonas D. M. Fisher, 2001. "Habit Persistence, Asset Returns, and the Business Cycle," American Economic Review, American Economic Association, vol. 91(1), pages 149-166, March.
    8. Del Negro, Marco & Schorfheide, Frank & Smets, Frank & Wouters, Rafael, 2007. "On the Fit of New Keynesian Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 123-143, April.
    9. Sungbae An & Frank Schorfheide, 2007. "Bayesian Analysis of DSGE Models," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 113-172.
    10. Lawrence J. Christiano & Martin Eichenbaum & Charles L. Evans, 2005. "Nominal Rigidities and the Dynamic Effects of a Shock to Monetary Policy," Journal of Political Economy, University of Chicago Press, vol. 113(1), pages 1-45, February.
    11. Rochelle M. Edge & Michael T. Kiley & Jean-Philippe Laforte, 2010. "A comparison of forecast performance between Federal Reserve staff forecasts, simple reduced-form models, and a DSGE model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 720-754.
    12. Adolfson, Malin & Laséen, Stefan & Lindé, Jesper & Villani, Mattias, 2008. "Evaluating an estimated new Keynesian small open economy model," Journal of Economic Dynamics and Control, Elsevier, vol. 32(8), pages 2690-2721, August.
    13. Marc P. Giannoni & Jean Boivin, 2005. "DSGE Models in a Data-Rich Environment," Computing in Economics and Finance 2005 431, Society for Computational Economics.
    14. Calvo, Guillermo A., 1983. "Staggered prices in a utility-maximizing framework," Journal of Monetary Economics, Elsevier, vol. 12(3), pages 383-398, September.
    15. Frank Smets & Raf Wouters, 2004. "Forecasting with a Bayesian DSGE Model: An Application to the Euro Area," Journal of Common Market Studies, Wiley Blackwell, vol. 42(4), pages 841-867, November.
    16. Malin Adolfson & Stefan Laseen & Jesper Lindé & Mattias Villani, 2005. "An estimated New Keynesian small open economy model," Proceedings, Board of Governors of the Federal Reserve System (U.S.).
    17. Frank Smets & Rafael Wouters, 2007. "Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach," American Economic Review, American Economic Association, vol. 97(3), pages 586-606, June.
    18. Coenen, Günter & McAdam, Peter & Straub, Roland, 2008. "Tax reform and labour-market performance in the euro area: A simulation-based analysis using the New Area-Wide Model," Journal of Economic Dynamics and Control, Elsevier, vol. 32(8), pages 2543-2583, August.
    19. Miles S. Kimball & Matthew D. Shapiro, 2008. "Labor Supply: Are the Income and Substitution Effects Both Large or Both Small?," NBER Working Papers 14208, National Bureau of Economic Research, Inc.
    20. Harvey, David I & Leybourne, Stephen J & Newbold, Paul, 1998. "Tests for Forecast Encompassing," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 254-259, April.
    21. Mattias Villani & Malin Adolfson & Jesper Linde, 2005. "Forecasting Performance of an Open Economy Dynamic Stochastic General Equilibrium Model," Money Macro and Finance (MMF) Research Group Conference 2005 32, Money Macro and Finance Research Group.
    22. Sims, Christopher A, 2002. "Solving Linear Rational Expectations Models," Computational Economics, Springer;Society for Computational Economics, vol. 20(1-2), pages 1-20, October.
    23. Taylor, John B., 1993. "Discretion versus policy rules in practice," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 39(1), pages 195-214, December.
    24. Frank Smets & Raf Wouters, 2003. "An Estimated Dynamic Stochastic General Equilibrium Model of the Euro Area," Journal of the European Economic Association, MIT Press, vol. 1(5), pages 1123-1175, September.
    25. Francis X. Diebold & Jinyong Hahn & Anthony S. Tay, 1999. "Multivariate Density Forecast Evaluation And Calibration In Financial Risk Management: High-Frequency Returns On Foreign Exchange," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 661-673, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Del Negro, Marco & Schorfheide, Frank, 2008. "Forming priors for DSGE models (and how it affects the assessment of nominal rigidities)," Journal of Monetary Economics, Elsevier, vol. 55(7), pages 1191-1208, October.
    2. Marco Del Negro & Frank Schorfheide, 2009. "Monetary Policy Analysis with Potentially Misspecified Models," American Economic Review, American Economic Association, vol. 99(4), pages 1415-1450, September.
    3. Bekiros Stelios & Paccagnini Alessia, 2015. "Estimating point and density forecasts for the US economy with a factor-augmented vector autoregressive DSGE model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(2), pages 107-136, April.
    4. Bekiros, Stelios D. & Paccagnini, Alessia, 2014. "Bayesian forecasting with small and medium scale factor-augmented vector autoregressive DSGE models," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 298-323.
    5. Negro, Marco Del & Schorfheide, Frank, 2013. "DSGE Model-Based Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 57-140, Elsevier.
    6. Del Negro, Marco & Eusepi, Stefano, 2011. "Fitting observed inflation expectations," Journal of Economic Dynamics and Control, Elsevier, vol. 35(12), pages 2105-2131.
    7. Özer Karagedikli & Troy Matheson & Christie Smith & Shaun P. Vahey, 2010. "RBCs AND DSGEs: THE COMPUTATIONAL APPROACH TO BUSINESS CYCLE THEORY AND EVIDENCE," Journal of Economic Surveys, Wiley Blackwell, vol. 24(1), pages 113-136, February.
    8. Maik H. Wolters, 2015. "Evaluating Point and Density Forecasts of DSGE Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(1), pages 74-96, January.
    9. Warne, Anders & Coenen, Günter & Christoffel, Kai, 2008. "The new area-wide model of the euro area: a micro-founded open-economy model for forecasting and policy analysis," Working Paper Series 944, European Central Bank.
    10. Mr. Maxym Kryshko, 2011. "Data-Rich DSGE and Dynamic Factor Models," IMF Working Papers 2011/216, International Monetary Fund.
    11. Paccagnini, Alessia, 2017. "Dealing with Misspecification in DSGE Models: A Survey," MPRA Paper 82914, University Library of Munich, Germany.
    12. Ali Dib & Mohamed Gammoudi & Kevin Moran, 2008. "Forecasting Canadian time series with the New Keynesian model," Canadian Journal of Economics, Canadian Economics Association, vol. 41(1), pages 138-165, February.
    13. Volker Wieland & Maik Wolters, 2011. "The diversity of forecasts from macroeconomic models of the US economy," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 47(2), pages 247-292, June.
    14. Rabanal, Pau & Tuesta, Vicente, 2010. "Euro-dollar real exchange rate dynamics in an estimated two-country model: An assessment," Journal of Economic Dynamics and Control, Elsevier, vol. 34(4), pages 780-797, April.
    15. Schmidt, Sebastian & Wieland, Volker, 2013. "The New Keynesian Approach to Dynamic General Equilibrium Modeling: Models, Methods and Macroeconomic Policy Evaluation," Handbook of Computable General Equilibrium Modeling, in: Peter B. Dixon & Dale Jorgenson (ed.), Handbook of Computable General Equilibrium Modeling, edition 1, volume 1, chapter 0, pages 1439-1512, Elsevier.
    16. Tovar, Camilo Ernesto, 2009. "DSGE Models and Central Banks," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 3, pages 1-31.
    17. Stefano Grassi & Marco Lorusso & Francesco Ravazzolo, 2021. "Adaptive Importance Sampling for DSGE Models," BEMPS - Bozen Economics & Management Paper Series BEMPS84, Faculty of Economics and Management at the Free University of Bozen.
    18. Frank Schorfheide, 2008. "DSGE model-based estimation of the New Keynesian Phillips curve," Economic Quarterly, Federal Reserve Bank of Richmond, vol. 94(Fall), pages 397-433.
    19. Mauro Costantini & Ulrich Gunter & Robert M. Kunst, 2017. "Forecast Combinations in a DSGE‐VAR Lab," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(3), pages 305-324, April.
    20. Coenen, Günter & Straub, Roland & Trabandt, Mathias, 2013. "Gauging the effects of fiscal stimulus packages in the euro area," Journal of Economic Dynamics and Control, Elsevier, vol. 37(2), pages 367-386.

    More about this item

    Keywords

    Bayesian methods DSGE models Econometric models Evaluating forecasts Macroeconomic forecasting;

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E27 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Forecasting and Simulation: Models and Applications
    • E47 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:26:y::i:2:p:348-373. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.