Vanilla Option Pricing on Stochastic Volatility market models
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005.
"A Theory Of The Term Structure Of Interest Rates,"
World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164,
World Scientific Publishing Co. Pte. Ltd..
- Cox, John C & Ingersoll, Jonathan E, Jr & Ross, Stephen A, 1985. "A Theory of the Term Structure of Interest Rates," Econometrica, Econometric Society, vol. 53(2), pages 385-407, March.
- Roger Lord & Remmert Koekkoek & Dick Van Dijk, 2010.
"A comparison of biased simulation schemes for stochastic volatility models,"
Quantitative Finance, Taylor & Francis Journals, vol. 10(2), pages 177-194.
- Roger Lord & Remmert Koekkoek & Dick van Dijk, 2006. "A Comparison of Biased Simulation Schemes for Stochastic Volatility Models," Tinbergen Institute Discussion Papers 06-046/4, Tinbergen Institute, revised 07 Jun 2007.
- Vladimir Piterbarg, 2005. "Stochastic Volatility Model with Time-dependent Skew," Applied Mathematical Finance, Taylor & Francis Journals, vol. 12(2), pages 147-185.
- Christian Kahl & Peter Jackel, 2006. "Fast strong approximation Monte Carlo schemes for stochastic volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 6(6), pages 513-536.
- Mark Broadie & Özgür Kaya, 2006. "Exact Simulation of Stochastic Volatility and Other Affine Jump Diffusion Processes," Operations Research, INFORMS, vol. 54(2), pages 217-231, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dell'Era, Mario, 2010. "Geometrical Approximation method and stochastic volatility market models," MPRA Paper 22568, University Library of Munich, Germany.
- Dell'Era, Mario, 2010. "Geometrical Considerations on Heston's Market Model," MPRA Paper 21523, University Library of Munich, Germany.
- Paul Glasserman & Kyoung-Kuk Kim, 2011. "Gamma expansion of the Heston stochastic volatility model," Finance and Stochastics, Springer, vol. 15(2), pages 267-296, June.
- Nicola Bruti-Liberati, 2007. "Numerical Solution of Stochastic Differential Equations with Jumps in Finance," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1, July-Dece.
- Mascagni Michael & Hin Lin-Yee, 2013. "Parallel pseudo-random number generators: A derivative pricing perspective with the Heston stochastic volatility model," Monte Carlo Methods and Applications, De Gruyter, vol. 19(2), pages 77-105, July.
- Nan Chen & Zhengyu Huang, 2013. "Localization and Exact Simulation of Brownian Motion-Driven Stochastic Differential Equations," Mathematics of Operations Research, INFORMS, vol. 38(3), pages 591-616, August.
- Mariano González-Sánchez & Eva M. Ibáñez Jiménez & Ana I. Segovia San Juan, 2022. "Market and model risks: a feasible joint estimate methodology," Risk Management, Palgrave Macmillan, vol. 24(3), pages 187-213, September.
- Choi, Jaehyuk & Kwok, Yue Kuen, 2024. "Simulation schemes for the Heston model with Poisson conditioning," European Journal of Operational Research, Elsevier, vol. 314(1), pages 363-376.
- Nicola Bruti-Liberati, 2007. "Numerical Solution of Stochastic Differential Equations with Jumps in Finance," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2007, January-A.
- Wenbin Hu & Junzi Zhou, 2017. "Backward simulation methods for pricing American options under the CIR process," Quantitative Finance, Taylor & Francis Journals, vol. 17(11), pages 1683-1695, November.
- Bégin Jean-François & Bédard Mylène & Gaillardetz Patrice, 2015. "Simulating from the Heston model: A gamma approximation scheme," Monte Carlo Methods and Applications, De Gruyter, vol. 21(3), pages 205-231, September.
- Roger Lord & Remmert Koekkoek & Dick Van Dijk, 2010.
"A comparison of biased simulation schemes for stochastic volatility models,"
Quantitative Finance, Taylor & Francis Journals, vol. 10(2), pages 177-194.
- Roger Lord & Remmert Koekkoek & Dick van Dijk, 2006. "A Comparison of Biased Simulation Schemes for Stochastic Volatility Models," Tinbergen Institute Discussion Papers 06-046/4, Tinbergen Institute, revised 07 Jun 2007.
- Michael A. Kouritzin, 2018. "Explicit Heston Solutions And Stochastic Approximation For Path-Dependent Option Pricing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(01), pages 1-45, February.
- Maya Briani & Lucia Caramellino & Giulia Terenzi & Antonino Zanette, 2019. "Numerical Stability Of A Hybrid Method For Pricing Options," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(07), pages 1-46, November.
- C'onall Kelly & Gabriel J. Lord, 2021. "An adaptive splitting method for the Cox-Ingersoll-Ross process," Papers 2112.09465, arXiv.org, revised Feb 2023.
- Roger Lord & Christian Kahl, 2006. "Why the Rotation Count Algorithm works," Tinbergen Institute Discussion Papers 06-065/2, Tinbergen Institute.
- Christian Bayer & Chiheb Ben Hammouda & Ra'ul Tempone, 2021. "Numerical Smoothing with Hierarchical Adaptive Sparse Grids and Quasi-Monte Carlo Methods for Efficient Option Pricing," Papers 2111.01874, arXiv.org, revised Jun 2022.
- Simon J. A. Malham & Jiaqi Shen & Anke Wiese, 2020. "Series expansions and direct inversion for the Heston model," Papers 2008.08576, arXiv.org, revised Jan 2021.
- Christian Bayer & Chiheb Ben Hammouda & Raul Tempone, 2020. "Multilevel Monte Carlo with Numerical Smoothing for Robust and Efficient Computation of Probabilities and Densities," Papers 2003.05708, arXiv.org, revised Oct 2023.
- Andrei Cozma & Matthieu Mariapragassam & Christoph Reisinger, 2015. "Convergence of an Euler scheme for a hybrid stochastic-local volatility model with stochastic rates in foreign exchange markets," Papers 1501.06084, arXiv.org, revised Oct 2016.
More about this item
Keywords
Vanilla Option pricing on Stochastic volatility market models;JEL classification:
- G1 - Financial Economics - - General Financial Markets
- C0 - Mathematical and Quantitative Methods - - General
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ORE-2010-10-16 (Operations Research)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:25645. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.