A Neuro-Fuzzy Approach in the Prediction of Financial Stability and Distress Periods
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Wen-Ying Cheng & Ender Su & Sheng-Jung Li, 2006. "A Financial Distress Pre-Warning Study by Fuzzy Regression Model of TSE-Listed Companies," Asian Academy of Management Journal of Accounting and Finance (AAMJAF), Penerbit Universiti Sains Malaysia, vol. 2(2), pages 75-93.
- Harlan Platt & Marjorie Platt, 2002. "Predicting corporate financial distress: Reflections on choice-based sample bias," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 26(2), pages 184-199, June.
- Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Balkin, Sandy, 2001. "On Forecasting Exchange Rates Using Neural Networks: P.H. Franses and P.V. Homelen, 1998, Applied Financial Economics, 8, 589-596," International Journal of Forecasting, Elsevier, vol. 17(1), pages 139-140.
- Barrow, Devon & Kourentzes, Nikolaos, 2018. "The impact of special days in call arrivals forecasting: A neural network approach to modelling special days," European Journal of Operational Research, Elsevier, vol. 264(3), pages 967-977.
- Daniel Buncic, 2012.
"Understanding forecast failure of ESTAR models of real exchange rates,"
Empirical Economics, Springer, vol. 43(1), pages 399-426, August.
- Daniel Buncic, 2009. "Understanding forecast failure of ESTAR models of real exchange rates," EERI Research Paper Series EERI_RP_2009_18, Economics and Econometrics Research Institute (EERI), Brussels.
- Buncic, Daniel, 2009. "Understanding forecast failure in ESTAR models of real exchange rates," MPRA Paper 13121, University Library of Munich, Germany.
- Buncic, Daniel, 2009. "Understanding forecast failure of ESTAR models of real exchange rates," MPRA Paper 16526, University Library of Munich, Germany.
- Sofie Balcaen & Sophie Manigart & Hubert Ooghe, 2011.
"From distress to exit: determinants of the time to exit,"
Journal of Evolutionary Economics, Springer, vol. 21(3), pages 407-446, August.
- Balcaen, S. & Manigart, S. & Ooghe, H., 2009. "From Distress to exit: determinants of the time to exit," Vlerick Leuven Gent Management School Working Paper Series 2009-12, Vlerick Leuven Gent Management School.
- S. Balcaen & S. Manigart & H. Ooghe, 2009. "From distress to exit: determinants of the time to exit," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 09/588, Ghent University, Faculty of Economics and Business Administration.
- Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
- Apostolos Ampountolas & Titus Nyarko Nde & Paresh Date & Corina Constantinescu, 2021. "A Machine Learning Approach for Micro-Credit Scoring," Risks, MDPI, vol. 9(3), pages 1-20, March.
- Peng Zhu & Yuante Li & Yifan Hu & Qinyuan Liu & Dawei Cheng & Yuqi Liang, 2024. "LSR-IGRU: Stock Trend Prediction Based on Long Short-Term Relationships and Improved GRU," Papers 2409.08282, arXiv.org, revised Sep 2024.
- Ebrahimpour, Reza & Nikoo, Hossein & Masoudnia, Saeed & Yousefi, Mohammad Reza & Ghaemi, Mohammad Sajjad, 2011.
"Mixture of MLP-experts for trend forecasting of time series: A case study of the Tehran stock exchange,"
International Journal of Forecasting, Elsevier, vol. 27(3), pages 804-816, July.
- Ebrahimpour, Reza & Nikoo, Hossein & Masoudnia, Saeed & Yousefi, Mohammad Reza & Ghaemi, Mohammad Sajjad, 2011. "Mixture of MLP-experts for trend forecasting of time series: A case study of the Tehran stock exchange," International Journal of Forecasting, Elsevier, vol. 27(3), pages 804-816.
- Talam, Camilla & Kiemo, Samuel, 2024. "Interest rate risk in Kenya: The banking sector stability and fiscal risks nexus," KBA Centre for Research on Financial Markets and Policy Working Paper Series 80, Kenya Bankers Association (KBA).
- Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
- Leung, Philip C.M. & Lee, Eric W.M., 2013. "Estimation of electrical power consumption in subway station design by intelligent approach," Applied Energy, Elsevier, vol. 101(C), pages 634-643.
- Donya Rahmani & Saeed Heravi & Hossein Hassani & Mansi Ghodsi, 2016. "Forecasting time series with structural breaks with Singular Spectrum Analysis, using a general form of recurrent formula," Papers 1605.02188, arXiv.org.
- Wei Sun & Yujun He & Hong Chang, 2015. "Forecasting Fossil Fuel Energy Consumption for Power Generation Using QHSA-Based LSSVM Model," Energies, MDPI, vol. 8(2), pages 1-21, January.
- Arati Kale & Devendra Kale & Sriram Villupuram, 2024. "Decomposition of risk for small size and low book-to-market stocks," Journal of Asset Management, Palgrave Macmillan, vol. 25(1), pages 96-112, February.
- Saman, Corina, 2011. "Scenarios of the Romanian GDP Evolution With Neural Models," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 129-140, December.
- Ghiassi, M. & Saidane, H. & Zimbra, D.K., 2005. "A dynamic artificial neural network model for forecasting time series events," International Journal of Forecasting, Elsevier, vol. 21(2), pages 341-362.
- Barrow, Devon K., 2016. "Forecasting intraday call arrivals using the seasonal moving average method," Journal of Business Research, Elsevier, vol. 69(12), pages 6088-6096.
- Jani, D.B. & Mishra, Manish & Sahoo, P.K., 2017. "Application of artificial neural network for predicting performance of solid desiccant cooling systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 352-366.
- Oscar Claveria & Salvador Torra, 2013.
"“Forecasting Business surveys indicators: neural networks vs. time series models”,"
AQR Working Papers
201312, University of Barcelona, Regional Quantitative Analysis Group, revised Nov 2013.
- Oscar Claveria & Salvador Torra, 2013. "“Forecasting Business surveys indicators: neural networks vs. time series models”," IREA Working Papers 201320, University of Barcelona, Research Institute of Applied Economics, revised Nov 2013.
- Bento, P.M.R. & Pombo, J.A.N. & Calado, M.R.A. & Mariano, S.J.P.S., 2018. "A bat optimized neural network and wavelet transform approach for short-term price forecasting," Applied Energy, Elsevier, vol. 210(C), pages 88-97.
More about this item
Keywords
Financial distress; ANFIS; Neuro-Fuzzy; Fuzzy rules; Fuzzy membership functions; triangle; Gaussian; MALTAB;All these keywords.
JEL classification:
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
- C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
- C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:24659. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.