IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/17843.html
   My bibliography  Save this paper

Multiple Testing Techniques in Growth Econometrics

Author

Listed:
  • Deckers, Thomas
  • Hanck, Christoph

Abstract

This paper discusses two longstanding questions in growth econometrics which involve multiple hypothesis testing. In cross sectional GDP growth regressions many variables are simultaneously tested for significance. Similarly, when investigating pairwise convergence of output for $n$ countries, $n(n-1)/2$ tests are performed. We propose to control the false discovery rate (FDR) so as not to erroneously declare variables significant in these multiple testing situations only because of the large number of tests performed. Doing so, we provide a simple new way to robustly select variables in economic growth models. We find that few other variables beyond the initial GDP level are needed to explain growth. We also show that convergence of per capita output using a time series definition with the necessary condition of no unit root in the log per-capita output gap of two economies does not appear to hold

Suggested Citation

  • Deckers, Thomas & Hanck, Christoph, 2009. "Multiple Testing Techniques in Growth Econometrics," MPRA Paper 17843, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:17843
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/17843/1/MPRA_paper_17843.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Matei Demetrescu & Uwe Hassler & Vladimir Kuzin, 2011. "Pitfalls of post-model-selection testing: experimental quantification," Empirical Economics, Springer, vol. 40(2), pages 359-372, April.
    2. Yoav Benjamini & Abba M. Krieger & Daniel Yekutieli, 2006. "Adaptive linear step-up procedures that control the false discovery rate," Biometrika, Biometrika Trust, vol. 93(3), pages 491-507, September.
    3. Hashem Pesaran, M., 2007. "A pair-wise approach to testing for output and growth convergence," Journal of Econometrics, Elsevier, vol. 138(1), pages 312-355, May.
    4. Robert M. Solow, 1956. "A Contribution to the Theory of Economic Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 70(1), pages 65-94.
    5. Robert J. Barro, 1991. "Economic Growth in a Cross Section of Countries," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 106(2), pages 407-443.
    6. David F. Hendry & Hans-Martin Krolzig, 2004. "We Ran One Regression," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 66(5), pages 799-810, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Smeekes, S., 2011. "Bootstrap sequential tests to determine the stationary units in a panel," Research Memorandum 003, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    2. Hanck, Christoph, 2011. "Now, whose schools are really better (or weaker) than Germany's? A multiple testing approach," Economic Modelling, Elsevier, vol. 28(4), pages 1739-1746, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ulaşan, Bülent, 2012. "Cross-country growth empirics and model uncertainty: An overview," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 6, pages 1-69.
    2. Capolupo, Rosa, 2009. "The New Growth Theories and Their Empirics after Twenty Years," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 3, pages 1-72.
    3. Markus Eberhardt & Francis Teal, 2011. "Econometrics For Grumblers: A New Look At The Literature On Cross‐Country Growth Empirics," Journal of Economic Surveys, Wiley Blackwell, vol. 25(1), pages 109-155, February.
    4. Ulaşan, Bülent, 2011. "Cross-country growth empirics and model uncertainty: An overview," Economics Discussion Papers 2011-37, Kiel Institute for the World Economy (IfW Kiel).
    5. Antonio Ciccone & Marek Jarociński, 2010. "Determinants of Economic Growth: Will Data Tell?," American Economic Journal: Macroeconomics, American Economic Association, vol. 2(4), pages 222-246, October.
    6. Bloom, David E. & Canning, David & Kotschy, Rainer & Prettner, Klaus & Schünemann, Johannes, 2024. "Health and economic growth: Reconciling the micro and macro evidence," World Development, Elsevier, vol. 178(C).
    7. Mark F. J. Steel, 2020. "Model Averaging and Its Use in Economics," Journal of Economic Literature, American Economic Association, vol. 58(3), pages 644-719, September.
    8. John Knight & Sai Ding, 2008. "Why has China Grown so Fast? The Role of Structural Change," Economics Series Working Papers 415, University of Oxford, Department of Economics.
    9. Leon-Gonzalez, Roberto & Vinayagathasan, Thanabalasingam, 2015. "Robust determinants of growth in Asian developing economies: A Bayesian panel data model averaging approach," Journal of Asian Economics, Elsevier, vol. 36(C), pages 34-46.
    10. Zeira, Joseph & di Vaio, Gianfranco & Battisti, Michele, 2013. "Global Divergence in Growth Regressions," CEPR Discussion Papers 9687, C.E.P.R. Discussion Papers.
    11. Magnus, Jan R. & Powell, Owen & Prüfer, Patricia, 2010. "A comparison of two model averaging techniques with an application to growth empirics," Journal of Econometrics, Elsevier, vol. 154(2), pages 139-153, February.
    12. Prüfer, P. & Tondl, G., 2008. "The FDI-Growth Nexus in Latin America : The Role of Source Countries and Local Conditions," Other publications TiSEM 73b28850-1597-4bcb-a76c-1, Tilburg University, School of Economics and Management.
    13. E. Tsanana & X. Chapsa & C. Katrakilidis, 2016. "Is growth corrupted or bureaucratic? Panel evidence from the enlarged EU," Applied Economics, Taylor & Francis Journals, vol. 48(33), pages 3131-3147, July.
    14. Sai Ding & John Knight, 2011. "Why has China Grown So Fast? The Role of Physical and Human Capital Formation," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 73(2), pages 141-174, April.
    15. R Burger & S du Plessis, 2011. "Examining the Robustness of Competing Explanations of Slow Growth in African Countries," Studies in Economics and Econometrics, Taylor & Francis Journals, vol. 35(3), pages 21-47, December.
    16. Steven N. Durlauf & Andros Kourtellos & Chih Ming Tan, 2008. "Empirics of Growth and Development," Chapters, in: Amitava Krishna Dutt & Jaime Ros (ed.), International Handbook of Development Economics, Volumes 1 & 2, volume 0, chapter 3, Edward Elgar Publishing.
    17. Michael S. Delgado & Daniel J. Henderson & Christopher F. Parmeter, 2014. "Does Education Matter for Economic Growth?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(3), pages 334-359, June.
    18. Roberto Leon-Gonzalez & Daniel Montolio, 2004. "Growth, convergence and public investment. A Bayesian model averaging approach," Applied Economics, Taylor & Francis Journals, vol. 36(17), pages 1925-1936.
    19. Ley, Eduardo & Steel, Mark F.J., 2007. "Jointness in Bayesian variable selection with applications to growth regression," Journal of Macroeconomics, Elsevier, vol. 29(3), pages 476-493, September.
    20. Durlauf, Steven N. & Quah, Danny T., 1999. "The new empirics of economic growth," Handbook of Macroeconomics, in: J. B. Taylor & M. Woodford (ed.), Handbook of Macroeconomics, edition 1, volume 1, chapter 4, pages 235-308, Elsevier.

    More about this item

    Keywords

    Growth Empirics; Multiple Testing; Convergence; Bootstrap;
    All these keywords.

    JEL classification:

    • O47 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - Empirical Studies of Economic Growth; Aggregate Productivity; Cross-Country Output Convergence
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:17843. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.