IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/14808.html
   My bibliography  Save this paper

Existence of continuous utility functions for arbitrary binary relations: some sufficient conditions

Author

Listed:
  • Bosi, Gianni
  • Caterino, Alessandro
  • Ceppitelli, Rita

Abstract

We present new sufficient conditions for the existence of a continuous utility function for an arbitrary binary relation on a topological space. Such conditions are basically obtained by using both the concept of a weakly continuous binary relation on a topological space and the concept of a countable network weight. In particular, we are concerned with suitable topological notions which generalize the concept of compactness and do not imply second countability or local compactness.

Suggested Citation

  • Bosi, Gianni & Caterino, Alessandro & Ceppitelli, Rita, 2009. "Existence of continuous utility functions for arbitrary binary relations: some sufficient conditions," MPRA Paper 14808, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:14808
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/14808/1/MPRA_paper_14808.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chateauneuf, Alain, 1987. "Continuous representation of a preference relation on a connected topological space," Journal of Mathematical Economics, Elsevier, vol. 16(2), pages 139-146, April.
    2. Back, Kerry, 1986. "Concepts of similarity for utility functions," Journal of Mathematical Economics, Elsevier, vol. 15(2), pages 129-142, April.
    3. Bosi, G. & Mehta, G. B., 2002. "Existence of a semicontinuous or continuous utility function: a unified approach and an elementary proof," Journal of Mathematical Economics, Elsevier, vol. 38(3), pages 311-328, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alcantud, José Carlos R. & Bosi, Gianni & Zuanon, Magalì, 2013. "Representations of preorders by strong multi-objective functions," MPRA Paper 52329, University Library of Munich, Germany.
    2. José Carlos R. Alcantud & Gianni Bosi & Magalì Zuanon, 2016. "Richter–Peleg multi-utility representations of preorders," Theory and Decision, Springer, vol. 80(3), pages 443-450, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peris J. E. & Subiza, B., 1996. "Demand correspondence for pseudotransitive preferences," Mathematical Social Sciences, Elsevier, vol. 31(1), pages 61-61, February.
    2. Estévez Toranzo, Margarita & García Cutrín, Javier & Hervés Beloso,Carlos & López López, Miguel A., 1993. "A note on representation of references," UC3M Working papers. Economics 2905, Universidad Carlos III de Madrid. Departamento de Economía.
    3. Carlos Alós-Ferrer & Klaus Ritzberger, 2015. "On the characterization of preference continuity by chains of sets," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 3(2), pages 115-128, October.
    4. Gilboa, Itzhak & Lapson, Robert, 1995. "Aggregation of Semiorders: Intransitive Indifference Makes a Difference," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 5(1), pages 109-126, January.
    5. Enrico G. De Giorgi & David B. Brown & Melvyn Sim, 2010. "Dual representation of choice and aspirational preferences," University of St. Gallen Department of Economics working paper series 2010 2010-07, Department of Economics, University of St. Gallen.
    6. M. Ali Khan & Metin Uyanık, 2021. "Topological connectedness and behavioral assumptions on preferences: a two-way relationship," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(2), pages 411-460, March.
    7. Kopylov, Igor, 2016. "Canonical utility functions and continuous preference extensions," Journal of Mathematical Economics, Elsevier, vol. 67(C), pages 32-37.
    8. Jacques Durieu & Hans Haller & Nicolas Querou & Philippe Solal, 2008. "Ordinal Games," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 10(02), pages 177-194.
    9. Bosi, Gianni & Zuanon, Magalì, 2014. "Upper semicontinuous representations of interval orders," Mathematical Social Sciences, Elsevier, vol. 68(C), pages 60-63.
    10. Marc Le Menestrel & Bertrand Lemaire, 2004. "Biased quantitative measurement of interval ordered homothetic preferences," Economics Working Papers 789, Department of Economics and Business, Universitat Pompeu Fabra.
    11. Carlos Hervés-Beloso & Monica Patriche, 2014. "A Fixed-Point Theorem and Equilibria of Abstract Economies with Weakly Upper Semicontinuous Set-Valued Maps," Journal of Optimization Theory and Applications, Springer, vol. 163(3), pages 719-736, December.
    12. David B. BROWN & Enrico G. DE GIORGI & Melvyn SIM, 2009. "A Satiscing Alternative to Prospect Theory," Swiss Finance Institute Research Paper Series 09-19, Swiss Finance Institute.
    13. Samuel Drapeau & Michael Kupper, 2013. "Risk Preferences and Their Robust Representation," Mathematics of Operations Research, INFORMS, vol. 38(1), pages 28-62, February.
    14. Gianni Bosi & Asier Estevan, 2024. "Continuous Representations of Preferences by Means of Two Continuous Functions," Papers 2402.07908, arXiv.org.
    15. Estévez Toranzo, Margarita & Hervés Beloso, Carlos & López López, Miguel A., 1993. "Una nota sobre la representación numérica de relaciones de preferencia," DES - Documentos de Trabajo. Estadística y Econometría. DS 2941, Universidad Carlos III de Madrid. Departamento de Estadística.
    16. Begoña Subiza Martínez & Carmen Herrero Blanco, 1991. "A characterization of acyclic preferences on countable sets," Working Papers. Serie AD 1991-01, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    17. Cordoba, Jose M. & Hammond, Peter J., 1998. "Asymptotically strategy-proof Walrasian exchange," Mathematical Social Sciences, Elsevier, vol. 36(3), pages 185-212, December.
    18. Gianni Bosi, 2002. "Semicontinuous Representability of Homothetic Interval Orders by Means of Two Homogeneous Functionals," Theory and Decision, Springer, vol. 52(4), pages 303-312, June.
    19. Marc-Arthur Diaye & Michal Wong-Urdanivia, 2006. "A Simple Test of Richter-Rationality," Documents de recherche 06-01, Centre d'Études des Politiques Économiques (EPEE), Université d'Evry Val d'Essonne.
    20. Sebastián Cea-Echenique & Matías Fuentes, 2020. "On the continuity of the walras correspondence for distributional economies with an infinite dimensional commodity space," Working Papers hal-02430960, HAL.

    More about this item

    Keywords

    hereditarily Lindeloef space; weakly continuous binary relation; countable network weight; hemicompactness; submetrizability;
    All these keywords.

    JEL classification:

    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:14808. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.