IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/52329.html
   My bibliography  Save this paper

Representations of preorders by strong multi-objective functions

Author

Listed:
  • Alcantud, José Carlos R.
  • Bosi, Gianni
  • Zuanon, Magalì

Abstract

We introduce a new kind of representation of a not necessarily total preorder, called strong multi-utility representation, according to which not only the preorder itself but also its strict part is fully represented by a family of multi-objective functions. The representability by means of semicontinuous or continuous multi-objective functions is discussed, as well as the relation between the existence of a strong multi-utility representation and the existence of a Richter-Peleg utility function. We further present conditions for the existence of a semicontinuous or continuous countable strong multi-utility representation.

Suggested Citation

  • Alcantud, José Carlos R. & Bosi, Gianni & Zuanon, Magalì, 2013. "Representations of preorders by strong multi-objective functions," MPRA Paper 52329, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:52329
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/52329/1/MPRA_paper_52329.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dubra, Juan & Maccheroni, Fabio & Ok, Efe A., 2004. "Expected utility theory without the completeness axiom," Journal of Economic Theory, Elsevier, vol. 115(1), pages 118-133, March.
    2. Schmeidler, David, 1971. "A Condition for the Completeness of Partial Preference Relations," Econometrica, Econometric Society, vol. 39(2), pages 403-404, March.
    3. Herden, Gerhard & Levin, Vladimir L., 2012. "Utility representation theorems for Debreu separable preorders," Journal of Mathematical Economics, Elsevier, vol. 48(3), pages 148-154.
    4. Bosi, Gianni & Herden, Gerhard, 2012. "Continuous multi-utility representations of preorders," Journal of Mathematical Economics, Elsevier, vol. 48(4), pages 212-218.
    5. Herden, Gerhard & Pallack, Andreas, 2002. "On the continuous analogue of the Szpilrajn Theorem I," Mathematical Social Sciences, Elsevier, vol. 43(2), pages 115-134, March.
    6. Juan Dubra & Fabio Maccheroni & Efe A. Ok, 2004. "Expected Utility Without the Completeness Axiom," Yale School of Management Working Papers ysm404, Yale School of Management.
    7. Ok, Efe A., 2002. "Utility Representation of an Incomplete Preference Relation," Journal of Economic Theory, Elsevier, vol. 104(2), pages 429-449, June.
    8. Peleg, Bezalel, 1970. "Utility Functions for Partially Ordered Topological Spaces," Econometrica, Econometric Society, vol. 38(1), pages 93-96, January.
    9. Kaminski, B., 2007. "On quasi-orderings and multi-objective functions," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1591-1598, March.
    10. Bergstrom, Theodore C., 1975. "Maximal elements of acyclic relations on compact sets," Journal of Economic Theory, Elsevier, vol. 10(3), pages 403-404, June.
    11. Bosi, Gianni & Caterino, Alessandro & Ceppitelli, Rita, 2009. "Existence of continuous utility functions for arbitrary binary relations: some sufficient conditions," MPRA Paper 14808, University Library of Munich, Germany.
    12. Evren, Özgür & Ok, Efe A., 2011. "On the multi-utility representation of preference relations," Journal of Mathematical Economics, Elsevier, vol. 47(4-5), pages 554-563.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pedro Hack & Daniel A. Braun & Sebastian Gottwald, 2022. "On a geometrical notion of dimension for partially ordered sets," Papers 2203.16272, arXiv.org, revised Sep 2022.
    2. Pedro Hack & Daniel A. Braun & Sebastian Gottwald, 2022. "Representing preorders with injective monotones," Theory and Decision, Springer, vol. 93(4), pages 663-690, November.
    3. Pedro Hack & Daniel A. Braun & Sebastian Gottwald, 2022. "The classification of preordered spaces in terms of monotones: complexity and optimization," Papers 2202.12106, arXiv.org, revised Aug 2022.
    4. Alcantud, José Carlos R. & Dubey, Ram Sewak, 2014. "Ordering infinite utility streams: Efficiency, continuity, and no impatience," Mathematical Social Sciences, Elsevier, vol. 72(C), pages 33-40.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. José Carlos R. Alcantud & Gianni Bosi & Magalì Zuanon, 2016. "Richter–Peleg multi-utility representations of preorders," Theory and Decision, Springer, vol. 80(3), pages 443-450, March.
    2. Cosimo Munari, 2020. "Multi-utility representations of incomplete preferences induced by set-valued risk measures," Papers 2009.04151, arXiv.org.
    3. Bosi, Gianni & Herden, Gerhard, 2012. "Continuous multi-utility representations of preorders," Journal of Mathematical Economics, Elsevier, vol. 48(4), pages 212-218.
    4. Gorno, Leandro & Rivello, Alessandro T., 2023. "A maximum theorem for incomplete preferences," Journal of Mathematical Economics, Elsevier, vol. 106(C).
    5. Cosimo Munari, 2021. "Multi-utility representations of incomplete preferences induced by set-valued risk measures," Finance and Stochastics, Springer, vol. 25(1), pages 77-99, January.
    6. Evren, Özgür & Ok, Efe A., 2011. "On the multi-utility representation of preference relations," Journal of Mathematical Economics, Elsevier, vol. 47(4-5), pages 554-563.
    7. Giarlotta, Alfio & Greco, Salvatore, 2013. "Necessary and possible preference structures," Journal of Mathematical Economics, Elsevier, vol. 49(2), pages 163-172.
    8. Leandro Gorno, 2018. "The structure of incomplete preferences," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 66(1), pages 159-185, July.
    9. Marcus Pivato, 2020. "Subjective expected utility with a spectral state space," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 69(2), pages 249-313, March.
    10. Bosi, Gianni & Herden, Gerhard, 2016. "On continuous multi-utility representations of semi-closed and closed preorders," Mathematical Social Sciences, Elsevier, vol. 79(C), pages 20-29.
    11. Quartieri, Federico, 2022. "A unified view of the existence of maximals," Journal of Mathematical Economics, Elsevier, vol. 99(C).
    12. Uyanik, Metin & Khan, M. Ali, 2022. "The continuity postulate in economic theory: A deconstruction and an integration," Journal of Mathematical Economics, Elsevier, vol. 101(C).
    13. Pivato, Marcus, 2013. "Multiutility representations for incomplete difference preorders," Mathematical Social Sciences, Elsevier, vol. 66(3), pages 196-220.
    14. Leandro Nascimento, 2011. "Remarks on the consumer problem under incomplete preferences," Theory and Decision, Springer, vol. 70(1), pages 95-110, January.
    15. Pivato, Marcus, 2009. "Social choice with approximate interpersonal comparisons of well-being," MPRA Paper 17060, University Library of Munich, Germany.
    16. McCarthy, David & Mikkola, Kalle & Thomas, Teruji, 2021. "Expected utility theory on mixture spaces without the completeness axiom," Journal of Mathematical Economics, Elsevier, vol. 97(C).
    17. A. Zapata & A. M. Mármol & L. Monroy & M. A. Caraballo, 2019. "A Maxmin Approach for the Equilibria of Vector-Valued Games," Group Decision and Negotiation, Springer, vol. 28(2), pages 415-432, April.
    18. Pedro Hack & Daniel A. Braun & Sebastian Gottwald, 2022. "Representing preorders with injective monotones," Theory and Decision, Springer, vol. 93(4), pages 663-690, November.
    19. M. Ali Khan & Metin Uyanık, 2021. "Topological connectedness and behavioral assumptions on preferences: a two-way relationship," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(2), pages 411-460, March.
    20. Itzhak Gilboa & Fabio Maccheroni & Massimo Marinacci & David Schmeidler, 2010. "Objective and Subjective Rationality in a Multiple Prior Model," Econometrica, Econometric Society, vol. 78(2), pages 755-770, March.

    More about this item

    Keywords

    Multi-utility representation; Richter-Peleg utility; Strong multi-utility;
    All these keywords.

    JEL classification:

    • C0 - Mathematical and Quantitative Methods - - General
    • D01 - Microeconomics - - General - - - Microeconomic Behavior: Underlying Principles

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:52329. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.