IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/12948.html
   My bibliography  Save this paper

Representation-Constrained Canonical Correlation Analysis: A Hybridization of Canonical Correlation and Principal Component Analyses

Author

Abstract

The classical canonical correlation analysis is extremely greedy to maximize the squared correlation between two sets of variables. As a result, if one of the variables in the dataset-1 is very highly correlated with another variable in the dataset-2, the canonical correlation will be very high irrespective of the correlation among the rest of the variables in the two datasets. We intend here to propose an alternative measure of association between two sets of variables that will not permit the greed of a select few variables in the datasets to prevail upon the fellow variables so much as to deprive the latter of contributing to their representative variables or canonical variates. Our proposed Representation-Constrained Canonical correlation (RCCCA) Analysis has the Classical Canonical Correlation Analysis (CCCA) at its one end (λ=0) and the Classical Principal Component Analysis (CPCA) at the other (as λ tends to be very large). In between it gives us a compromise solution. By a proper choice of λ, one can avoid hijacking of the representation issue of two datasets by a lone couple of highly correlated variables across those datasets. This advantage of the RCCCA over the CCCA deserves a serious attention by the researchers using statistical tools for data analysis.

Suggested Citation

  • Mishra, SK, 2009. "Representation-Constrained Canonical Correlation Analysis: A Hybridization of Canonical Correlation and Principal Component Analyses," MPRA Paper 12948, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:12948
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/12948/1/MPRA_paper_12948.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Mishra, SK, 2006. "Global Optimization by Differential Evolution and Particle Swarm Methods: Evaluation on Some Benchmark Functions," MPRA Paper 1005, University Library of Munich, Germany.
    2. Mishra, SK, 2009. "A note on the ordinal canonical correlation analysis of two sets of ranking scores," MPRA Paper 12796, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ji Yeh Choi & Heungsun Hwang & Michio Yamamoto & Kwanghee Jung & Todd S. Woodward, 2017. "A Unified Approach to Functional Principal Component Analysis and Functional Multiple-Set Canonical Correlation," Psychometrika, Springer;The Psychometric Society, vol. 82(2), pages 427-441, June.
    2. Mishra, SK, 2017. "Are Democratic Regimes Antithetical to Globalization?," MPRA Paper 83321, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. K. Mishra, 2010. "(Computer Algorithms) The Most Representative Composite Rank Ordering of Multi-Attribute Objects by the Particle Swarm Optimization Method," Journal of Quantitative Economics, The Indian Econometric Society, vol. 8(2), pages 165-200.
    2. Keliang Wang & Leonardo Lozano & Carlos Cardonha & David Bergman, 2023. "Optimizing over an Ensemble of Trained Neural Networks," INFORMS Journal on Computing, INFORMS, vol. 35(3), pages 652-674, May.
    3. SK Mishra, 2007. "Estimation of Zellner-Revankar Production Function Revisited," Economics Bulletin, AccessEcon, vol. 3(14), pages 1-7.
    4. Mishra, SK, 2012. "Construction of Pena’s DP2-based ordinal synthetic indicator when partial indicators are rank scores," MPRA Paper 39088, University Library of Munich, Germany.
    5. S K Mishra, 2007. "Globalization and Structural Changes in the Indian Industrial Sector: An Analysis of Production Functions," The IUP Journal of Managerial Economics, IUP Publications, vol. 0(4), pages 56-81, November.
    6. Mickaël Binois & David Ginsbourger & Olivier Roustant, 2020. "On the choice of the low-dimensional domain for global optimization via random embeddings," Journal of Global Optimization, Springer, vol. 76(1), pages 69-90, January.
    7. Mishra, SK, 2008. "A note on the sub-optimality of rank ordering of objects on the basis of the leading principal component factor scores," MPRA Paper 12419, University Library of Munich, Germany.
    8. Stefan C. Endres & Carl Sandrock & Walter W. Focke, 2018. "A simplicial homology algorithm for Lipschitz optimisation," Journal of Global Optimization, Springer, vol. 72(2), pages 181-217, October.
    9. Mishra, SK, 2007. "Completing correlation matrices of arbitrary order by differential evolution method of global optimization: A Fortran program," MPRA Paper 2000, University Library of Munich, Germany.
    10. repec:ebl:ecbull:v:3:y:2007:i:14:p:1-7 is not listed on IDEAS
    11. Piotrowski, Adam P. & Napiorkowski, Jaroslaw J. & Kiczko, Adam, 2012. "Differential Evolution algorithm with Separated Groups for multi-dimensional optimization problems," European Journal of Operational Research, Elsevier, vol. 216(1), pages 33-46.
    12. Mishra, SK, 2012. "Global optimization of some difficult benchmark functions by cuckoo-hostco-evolution meta-heuristics," MPRA Paper 40615, University Library of Munich, Germany.
    13. Sudhanshu K Mishra, 2013. "Global Optimization of Some Difficult Benchmark Functions by Host-Parasite Coevolutionary Algorithm," Economics Bulletin, AccessEcon, vol. 33(1), pages 1-18.

    More about this item

    Keywords

    Representation; constrained; canonical; correlation; principal components; variates; global optimization; particle swarm; ordinal variables; computer program; FORTRAN;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C43 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Index Numbers and Aggregation
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C89 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Other

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:12948. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.