IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/12796.html
   My bibliography  Save this paper

A note on the ordinal canonical correlation analysis of two sets of ranking scores

Author

Abstract

In this paper we have proposed a method to conduct the ordinal canonical correlation analysis (OCCA) that yields ordinal canonical variates and the coefficient of correlation between them, which is analogous to (and a generalization of) the rank correlation coefficient of Spearman. The ordinal canonical variates are themselves analogous to the canonical variates obtained by the conventional canonical correlation analysis (CCCA). Our proposed method is suitable to deal with the multivariable ordinal data arrays. Our examples have shown that in finding canonical rank scores and canonical correlation from an ordinal dataset, the CCCA is suboptimal. The OCCA suggested by us outperforms the conventional method. Moreover, our method can take care of any of the five different schemes of rank ordering. It uses the Particle Swarm Optimizer which is one of the recent and prized meta-heuristics for global optimization. The computer program developed by us is fast and accurate. It has worked very well to conduct the OCCA.

Suggested Citation

  • Mishra, SK, 2009. "A note on the ordinal canonical correlation analysis of two sets of ranking scores," MPRA Paper 12796, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:12796
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/12796/1/MPRA_paper_12796.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Korhonen, Pekka & Siljamaki, Aapo, 1998. "Ordinal principal component analysis theory and an application," Computational Statistics & Data Analysis, Elsevier, vol. 26(4), pages 411-424, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sudhanshu K MISHRA, 2009. "Representation-Constrained Canonical Correlation-Analysis: A Hybridization Of Canonical Correlation And Principal Component Analysis," Journal of Applied Economic Sciences, Spiru Haret University, Faculty of Financial Management and Accounting Craiova, vol. 4(1(7)_ Spr).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. K. Mishra, 2010. "(Computer Algorithms) The Most Representative Composite Rank Ordering of Multi-Attribute Objects by the Particle Swarm Optimization Method," Journal of Quantitative Economics, The Indian Econometric Society, vol. 8(2), pages 165-200.
    2. Mishra, SK, 2009. "The most representative composite rank ordering of multi-attribute objects by the particle swarm optimization," MPRA Paper 12723, University Library of Munich, Germany.
    3. Charpentier, Arthur & Mussard, Stéphane & Ouraga, Téa, 2021. "Principal component analysis: A generalized Gini approach," European Journal of Operational Research, Elsevier, vol. 294(1), pages 236-249.
    4. Tarsitano Agostino & Lombardo Rosetta, 2013. "A Coefficient of Correlation Based on Ratios of Ranks and Anti-ranks," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 233(2), pages 206-224, April.
    5. Arcagni, Alberto & Avellone, Alessandro & Fattore, Marco, 2022. "Complexity reduction and approximation of multidomain systems of partially ordered data," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    6. Graciela Estévez-Pérez & Philippe Vieu, 2021. "A new way for ranking functional data with applications in diagnostic test," Computational Statistics, Springer, vol. 36(1), pages 127-154, March.
    7. Agostino Tarsitano & Rosetta Lombardo, 2011. "An Exhaustive Coefficient Of Rank Correlation," Working Papers 201111, Università della Calabria, Dipartimento di Economia, Statistica e Finanza "Giovanni Anania" - DESF.

    More about this item

    Keywords

    Ordinal; Canonical correlation; rank order; rankings; scores; standard competition; modified competition; fractional; dense; Repulsive Particle Swarm; global optimization; computer program; FORTRAN;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C43 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Index Numbers and Aggregation
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C88 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Other Computer Software
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:12796. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.