IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/1005.html
   My bibliography  Save this paper

Global Optimization by Differential Evolution and Particle Swarm Methods: Evaluation on Some Benchmark Functions

Author

Abstract

In this paper we compare the performance of the Differential Evolution (DE) and the Repulsive Particle Swarm (RPS) methods of global optimization. To this end, seventy test functions have been chosen. Among these test functions, some are new while others are well known in the literature; some are unimodal, the others multi-modal; some are small in dimension (no. of variables, x in f(x)), while the others are large in dimension; some are algebraic polynomial equations, while the other are transcendental, etc. FORTRAN programs of DE and RPS have been appended. Among 70 functions, a few have been run for small as well as large dimensions. In total, 73 optimization exercises have been done. DE has succeeded in 63 cases while RPS has succeeded in 55 cases. In almost all cases, DE has converged faster and given much more accurate results. The convergence of RPS is much slower even for lesser stringency on accuracy. Some test functions have been hard for both the methods. These are: Zero-Sum (30D), Perm#1, Perm#2, Power and Bukin functions, Weierstrass, and Michalewicz functions. From what we find, one cannot reach at the definite conclusion that the DE performs better or worse than the RPS. None could assure a supremacy over the other. Each one faltered in some cases; each one succeeded in some others. However, DE is unquestionably faster, more accurate and more frequently successful than the RPS. It may be argued, nevertheless, that alternative choice of adjustable parameters could have yielded better results in either method’s case. The protagonists of either method could suggest that. Our purpose is not to join with the one or the other. We simply want to highlight that in certain cases they both succeed, in certain other case they both fail and each one has some selective preference over some particular type of surfaces. What is needed is to identify such structures and surfaces that suit a particular method most. It is needed that we find out some criteria to classify the problems that suit (or does not suit) a particular method. This classification will highlight the comparative advantages of using a particular method for dealing with a particular class of problems.

Suggested Citation

  • Mishra, SK, 2006. "Global Optimization by Differential Evolution and Particle Swarm Methods: Evaluation on Some Benchmark Functions," MPRA Paper 1005, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:1005
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/1005/1/MPRA_paper_1005.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sudhanshu K MISHRA, 2009. "Representation-Constrained Canonical Correlation-Analysis: A Hybridization Of Canonical Correlation And Principal Component Analysis," Journal of Applied Economic Sciences, Spiru Haret University, Faculty of Financial Management and Accounting Craiova, vol. 4(1(7)_ Spr).
    2. S. K. Mishra, 2010. "(Computer Algorithms) The Most Representative Composite Rank Ordering of Multi-Attribute Objects by the Particle Swarm Optimization Method," Journal of Quantitative Economics, The Indian Econometric Society, vol. 8(2), pages 165-200.
    3. SK Mishra, 2007. "Estimation of Zellner-Revankar Production Function Revisited," Economics Bulletin, AccessEcon, vol. 3(14), pages 1-7.
    4. Sudhanshu K Mishra, 2013. "Global Optimization of Some Difficult Benchmark Functions by Host-Parasite Coevolutionary Algorithm," Economics Bulletin, AccessEcon, vol. 33(1), pages 1-18.
    5. Mishra, SK, 2012. "Construction of Pena’s DP2-based ordinal synthetic indicator when partial indicators are rank scores," MPRA Paper 39088, University Library of Munich, Germany.
    6. Keliang Wang & Leonardo Lozano & Carlos Cardonha & David Bergman, 2023. "Optimizing over an Ensemble of Trained Neural Networks," INFORMS Journal on Computing, INFORMS, vol. 35(3), pages 652-674, May.
    7. Mishra, SK, 2012. "Global optimization of some difficult benchmark functions by cuckoo-hostco-evolution meta-heuristics," MPRA Paper 40615, University Library of Munich, Germany.
    8. Mishra, SK, 2008. "A note on the sub-optimality of rank ordering of objects on the basis of the leading principal component factor scores," MPRA Paper 12419, University Library of Munich, Germany.
    9. repec:ebl:ecbull:v:3:y:2007:i:14:p:1-7 is not listed on IDEAS
    10. Mickaël Binois & David Ginsbourger & Olivier Roustant, 2020. "On the choice of the low-dimensional domain for global optimization via random embeddings," Journal of Global Optimization, Springer, vol. 76(1), pages 69-90, January.
    11. S K Mishra, 2007. "Globalization and Structural Changes in the Indian Industrial Sector: An Analysis of Production Functions," The IUP Journal of Managerial Economics, IUP Publications, vol. 0(4), pages 56-81, November.
    12. Piotrowski, Adam P. & Napiorkowski, Jaroslaw J. & Kiczko, Adam, 2012. "Differential Evolution algorithm with Separated Groups for multi-dimensional optimization problems," European Journal of Operational Research, Elsevier, vol. 216(1), pages 33-46.
    13. Mishra, SK, 2007. "Completing correlation matrices of arbitrary order by differential evolution method of global optimization: A Fortran program," MPRA Paper 2000, University Library of Munich, Germany.
    14. Stefan C. Endres & Carl Sandrock & Walter W. Focke, 2018. "A simplicial homology algorithm for Lipschitz optimisation," Journal of Global Optimization, Springer, vol. 72(2), pages 181-217, October.

    More about this item

    Keywords

    : Global optimization; Stochastic search; Repulsive particle swarm; Differential Evolution; Clustering algorithm; Simulated annealing; Genetic algorithm; Tabu search; Ant Colony algorithm; Monte Carlo method; Box algorithm; Nelder-Mead; Nonlinear programming; FORTRAN computer program; local optima; Benchmark; test functions;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:1005. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.