IDEAS home Printed from https://ideas.repec.org/a/jqe/jqenew/v8y2010i2p165-200.html
   My bibliography  Save this article

(Computer Algorithms) The Most Representative Composite Rank Ordering of Multi-Attribute Objects by the Particle Swarm Optimization Method

Author

Listed:
  • S. K. Mishra

Abstract

Rank-ordering of individuals or objects on multiple criteria has many important practical applications. A reasonably representative composite rank ordering of multi-attribute objects/individuals or multi-dimensional points is often obtained by the Principal Component Analysis, although much inferior but computationally convenient methods also are frequently used. However, such rank ordering - even the one based on the Principal Component Analysis - may not be optimal. This has been demonstrated by several numerical examples. To solve this problem, the Ordinal Principal Component Analysis was suggested some time back. However, this approach cannot deal with various types of alternative schemes of rank ordering, mainly due to its dependence on the method of solution by the constrained integer programming. In this paper we propose an alternative method of solution, namely by the Particle Swarm Optimization. A computer program in FORTRAN to solve the problem has also been provided. The suggested method is notably versatile and can take care of various schemes of rank ordering, norms and types or measures of correlation. The versatility of the method and its capability to obtain the most representative composite rank ordering of multi-attribute objects or multi-dimensional points have been demonstrated by several numerical examples. It has also been found that rank ordering based on maximization of the sum of absolute values of the correlation coefficients of composite rank scores with its constituent variables has robustness, but it may have multiple optimal solutions. Thus, while it solves the one problem, it gives rise to the other problem. The overall ranking of objects by maximin correlation principle performs better if the composite rank scores are obtained by direct optimization with respect to the individual ranking scores.

Suggested Citation

  • S. K. Mishra, 2010. "(Computer Algorithms) The Most Representative Composite Rank Ordering of Multi-Attribute Objects by the Particle Swarm Optimization Method," Journal of Quantitative Economics, The Indian Econometric Society, vol. 8(2), pages 165-200.
  • Handle: RePEc:jqe:jqenew:v:8:y:2010:i:2:p:165-200
    as

    Download full text from publisher

    File URL: http://www.jqe.co.in/journals/JQE_v8_n2_2010_p11.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mishra, SK, 2006. "Global Optimization by Differential Evolution and Particle Swarm Methods: Evaluation on Some Benchmark Functions," MPRA Paper 1005, University Library of Munich, Germany.
    2. Korhonen, Pekka & Siljamaki, Aapo, 1998. "Ordinal principal component analysis theory and an application," Computational Statistics & Data Analysis, Elsevier, vol. 26(4), pages 411-424, February.
    3. Mishra, SK, 2008. "A note on the sub-optimality of rank ordering of objects on the basis of the leading principal component factor scores," MPRA Paper 12419, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mishra, SK, 2012. "Construction of Pena’s DP2-based ordinal synthetic indicator when partial indicators are rank scores," MPRA Paper 39088, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Keliang Wang & Leonardo Lozano & Carlos Cardonha & David Bergman, 2023. "Optimizing over an Ensemble of Trained Neural Networks," INFORMS Journal on Computing, INFORMS, vol. 35(3), pages 652-674, May.
    2. Sudhanshu K MISHRA, 2009. "Representation-Constrained Canonical Correlation-Analysis: A Hybridization Of Canonical Correlation And Principal Component Analysis," Journal of Applied Economic Sciences, Spiru Haret University, Faculty of Financial Management and Accounting Craiova, vol. 4(1(7)_ Spr).
    3. SK Mishra, 2007. "Estimation of Zellner-Revankar Production Function Revisited," Economics Bulletin, AccessEcon, vol. 3(14), pages 1-7.
    4. Charpentier, Arthur & Mussard, Stéphane & Ouraga, Téa, 2021. "Principal component analysis: A generalized Gini approach," European Journal of Operational Research, Elsevier, vol. 294(1), pages 236-249.
    5. Tarsitano Agostino & Lombardo Rosetta, 2013. "A Coefficient of Correlation Based on Ratios of Ranks and Anti-ranks," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 233(2), pages 206-224, April.
    6. Mishra, SK, 2012. "Construction of Pena’s DP2-based ordinal synthetic indicator when partial indicators are rank scores," MPRA Paper 39088, University Library of Munich, Germany.
    7. repec:ebl:ecbull:v:3:y:2007:i:14:p:1-7 is not listed on IDEAS
    8. S K Mishra, 2007. "Globalization and Structural Changes in the Indian Industrial Sector: An Analysis of Production Functions," The IUP Journal of Managerial Economics, IUP Publications, vol. 0(4), pages 56-81, November.
    9. Piotrowski, Adam P. & Napiorkowski, Jaroslaw J. & Kiczko, Adam, 2012. "Differential Evolution algorithm with Separated Groups for multi-dimensional optimization problems," European Journal of Operational Research, Elsevier, vol. 216(1), pages 33-46.
    10. Mishra, SK, 2009. "The most representative composite rank ordering of multi-attribute objects by the particle swarm optimization," MPRA Paper 12723, University Library of Munich, Germany.
    11. Mickaël Binois & David Ginsbourger & Olivier Roustant, 2020. "On the choice of the low-dimensional domain for global optimization via random embeddings," Journal of Global Optimization, Springer, vol. 76(1), pages 69-90, January.
    12. Mishra, SK, 2012. "Global optimization of some difficult benchmark functions by cuckoo-hostco-evolution meta-heuristics," MPRA Paper 40615, University Library of Munich, Germany.
    13. Mishra, SK, 2008. "A note on the sub-optimality of rank ordering of objects on the basis of the leading principal component factor scores," MPRA Paper 12419, University Library of Munich, Germany.
    14. Arcagni, Alberto & Avellone, Alessandro & Fattore, Marco, 2022. "Complexity reduction and approximation of multidomain systems of partially ordered data," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    15. Graciela Estévez-Pérez & Philippe Vieu, 2021. "A new way for ranking functional data with applications in diagnostic test," Computational Statistics, Springer, vol. 36(1), pages 127-154, March.
    16. Stefan C. Endres & Carl Sandrock & Walter W. Focke, 2018. "A simplicial homology algorithm for Lipschitz optimisation," Journal of Global Optimization, Springer, vol. 72(2), pages 181-217, October.
    17. Agostino Tarsitano & Rosetta Lombardo, 2011. "An Exhaustive Coefficient Of Rank Correlation," Working Papers 201111, Università della Calabria, Dipartimento di Economia, Statistica e Finanza "Giovanni Anania" - DESF.
    18. Sudhanshu K Mishra, 2013. "Global Optimization of Some Difficult Benchmark Functions by Host-Parasite Coevolutionary Algorithm," Economics Bulletin, AccessEcon, vol. 33(1), pages 1-18.
    19. Mishra, SK, 2007. "Completing correlation matrices of arbitrary order by differential evolution method of global optimization: A Fortran program," MPRA Paper 2000, University Library of Munich, Germany.
    20. Mishra, SK, 2009. "A note on the ordinal canonical correlation analysis of two sets of ranking scores," MPRA Paper 12796, University Library of Munich, Germany.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jqe:jqenew:v:8:y:2010:i:2:p:165-200. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: D. M. Nachane or the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/tiesoea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.