IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/122951.html
   My bibliography  Save this paper

Stablecoins and credit risk: when do they stop being stable?

Author

Listed:
  • Korobova, Elena
  • Fantazzini, Dean

Abstract

Stablecoins are a pivotal and debated topic within decentralized finance (DeFi), attracting significant interest from researchers, investors, and crypto-enthusiasts. These digital assets are designed to offer stability in the volatile cryptocurrency market, addressing key challenges in traditional financial systems and DeFi, such as price volatility, transparency, and transaction efficiency. This paper contributes to the existing literature by estimating the credit risk associated with stablecoins, marking the first study to focus exclusively on this market. Our findings reveal that a substantial portion of stablecoins have failed, aligning with existing literature. Using Feder et al.'s (2018) methodology, we observed that 21% of stablecoins were "abandoned" at least once, with only 36% being later "resurrected," and just 11% maintaining their "resurrected" status. These results support the hypothesis that stablecoins rarely recover once they break their peg, often due to technical issues or loss of user trust. We also found that the time between a statistically significant break in the stablecoin's peg and its subsequent collapse or stabilization averages approximately 10 days. We estimated probabilities of default (PDs) for stablecoins based on market capitalization using various forecasting models. A robustness check further indicated that stablecoins on the Ethereum blockchain are less prone to default, likely due to Ethereum's robust ecosystem and the established presence of older stablecoins. Despite the study's limitations, including a limited dataset of 121 stablecoins and missing market capitalization data, the findings offer practical applications for investors and traders. The techniques and models applied in this research provide tools for evaluating credit risks in the stable-coins market, aiding in portfolio management and investment strategies.

Suggested Citation

  • Korobova, Elena & Fantazzini, Dean, 2024. "Stablecoins and credit risk: when do they stop being stable?," MPRA Paper 122951, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:122951
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/122951/1/MPRA_paper_122951.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dean Fantazzini, 2022. "Crypto-Coins and Credit Risk: Modelling and Forecasting Their Probability of Death," JRFM, MDPI, vol. 15(7), pages 1-34, July.
    2. Peter R. Hansen & Asger Lunde & James M. Nason, 2011. "The Model Confidence Set," Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
    3. Dean Fantazzini & Raffaella Calabrese, 2021. "Crypto Exchanges and Credit Risk: Modeling and Forecasting the Probability of Closure," JRFM, MDPI, vol. 14(11), pages 1-23, October.
    4. Dean Fantazzini & Stephan Zimin, 2020. "A multivariate approach for the simultaneous modelling of market risk and credit risk for cryptocurrencies," Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 47(1), pages 19-69, March.
    5. Lyons, Richard K. & Viswanath-Natraj, Ganesh, 2023. "What keeps stablecoins stable?," Journal of International Money and Finance, Elsevier, vol. 131(C).
    6. Zeileis, Achim & Leisch, Friedrich & Hornik, Kurt & Kleiber, Christian, 2002. "strucchange: An R Package for Testing for Structural Change in Linear Regression Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 7(i02).
    7. Fantazzini, Dean, 2023. "Assessing the Credit Risk of Crypto-Assets Using Daily Range Volatility Models," MPRA Paper 117141, University Library of Munich, Germany.
    8. Klaus Grobys & Niranjan Sapkota, 2020. "Predicting cryptocurrency defaults," Applied Economics, Taylor & Francis Journals, vol. 52(46), pages 5060-5076, October.
    9. Maria Giuli & Dean Fantazzini & Mario Maggi, 2008. "A New Approach for Firm Value and Default Probability Estimation beyond Merton Models," Computational Economics, Springer;Society for Computational Economics, vol. 31(2), pages 161-180, March.
    10. Briola, Antonio & Vidal-Tomás, David & Wang, Yuanrong & Aste, Tomaso, 2023. "Anatomy of a Stablecoin’s failure: The Terra-Luna case," Finance Research Letters, Elsevier, vol. 51(C).
    11. Achim Zeileis & Friedrich Leisch & Christian Kleiber & Kurt Hornik, 2005. "Monitoring structural change in dynamic econometric models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(1), pages 99-121, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fantazzini, Dean, 2023. "Assessing the Credit Risk of Crypto-Assets Using Daily Range Volatility Models," MPRA Paper 117141, University Library of Munich, Germany.
    2. Dean Fantazzini, 2022. "Crypto-Coins and Credit Risk: Modelling and Forecasting Their Probability of Death," JRFM, MDPI, vol. 15(7), pages 1-34, July.
    3. Dean Fantazzini, 2024. "Adaptive Conformal Inference for Computing Market Risk Measures: An Analysis with Four Thousand Crypto-Assets," JRFM, MDPI, vol. 17(6), pages 1-44, June.
    4. Yang, Zixiu & Fantazzini, Dean, 2022. "Using crypto assets pricing methods to build technical oscillators for short-term bitcoin trading," MPRA Paper 115508, University Library of Munich, Germany.
    5. Ravi Kashyap, 2024. "The Democratization of Wealth Management: Hedged Mutual Fund Blockchain Protocol," Papers 2405.02302, arXiv.org, revised Jul 2024.
    6. Fantazzini, Dean & Shangina, Tamara, 2019. "The importance of being informed: forecasting market risk measures for the Russian RTS index future using online data and implied volatility over two decades," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 55, pages 5-31.
    7. Saengchote, Kanis & Samphantharak, Krislert, 2024. "Digital money creation and algorithmic stablecoin run," Finance Research Letters, Elsevier, vol. 64(C).
    8. Ravi Kashyap, 2023. "DeFi Security: Turning The Weakest Link Into The Strongest Attraction," Papers 2312.00033, arXiv.org.
    9. Kashyap, Ravi, 2024. "The Democratization of Wealth Management: Hedged Mutual Fund Blockchain Protocol," Research in International Business and Finance, Elsevier, vol. 71(C).
    10. Dean Fantazzini, 2014. "Nowcasting and Forecasting the Monthly Food Stamps Data in the US Using Online Search Data," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-27, November.
    11. Magomedov, Said & Fantazzini, Dean, 2025. "Modeling and Forecasting the Probability of Crypto-Exchange Closures: A Forecast Combination Approach," MPRA Paper 123416, University Library of Munich, Germany.
    12. Christos Katris & Manolis G. Kavussanos, 2021. "Time series forecasting methods for the Baltic dry index," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1540-1565, December.
    13. Jan Verbesselt & Achim Zeileis & Martin Herold, 2011. "Near Real-Time Disturbance Detection in Terrestrial Ecosystems Using Satellite Image Time Series: Drought Detection in Somalia," Working Papers 2011-18, Faculty of Economics and Statistics, Universität Innsbruck.
    14. Gregory, Gadzinski & Alessio, Castello & Vito, Liuzzi & Patrice, Sargenti, 2024. "Break a peg! A study of stablecoin co-instability," International Review of Financial Analysis, Elsevier, vol. 96(PA).
    15. Dean Fantazzini & Stephan Zimin, 2020. "A multivariate approach for the simultaneous modelling of market risk and credit risk for cryptocurrencies," Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 47(1), pages 19-69, March.
    16. Zeileis, Achim & Shah, Ajay & Patnaik, Ila, 2010. "Testing, monitoring, and dating structural changes in exchange rate regimes," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1696-1706, June.
    17. Dean Fantazzini & Raffaella Calabrese, 2021. "Crypto Exchanges and Credit Risk: Modeling and Forecasting the Probability of Closure," JRFM, MDPI, vol. 14(11), pages 1-23, October.
    18. Carsten J. Crede, 2015. "A structural break cartel screen for dating and detecting collusion," Working Paper series, University of East Anglia, Centre for Competition Policy (CCP) 2015-11, Centre for Competition Policy, University of East Anglia, Norwich, UK..
    19. Dionysopoulos, Lambis & Urquhart, Andrew, 2024. "10 years of stablecoins: Their impact, what we know, and future research directions," Economics Letters, Elsevier, vol. 244(C).
    20. Han, Chulwoo & Park, Frank C., 2022. "A geometric framework for covariance dynamics," Journal of Banking & Finance, Elsevier, vol. 134(C).

    More about this item

    Keywords

    stablecoins; crypto-assets; cryptocurrencies; credit risk; default probability; probability of death; ZPP; Cox Proportional Hazards Model.;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C35 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions
    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
    • G33 - Financial Economics - - Corporate Finance and Governance - - - Bankruptcy; Liquidation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:122951. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.