IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/120220.html
   My bibliography  Save this paper

Cluster Evolution Analytics

Author

Listed:
  • Morales-Oñate, Víctor
  • Morales-Oñate, Bolívar

Abstract

In this paper we propose Cluster Evolution Analytics (CEA) as a framework that can be considered in the realm of Advanced Exploratory Data Analysis or unsupervised learning. CEA leverages on the temporal component of panel data and it is based on combining two techniques that are usually not related: leave-one-out and plug-in principle. This allows us to use exploratory what if questions in the sense that the present information of an object is plugged-in a dataset in a previous time frame so that we can explore its evolution (and of its neighbors) to the present. We illustrate our results on a real dataset applying CEA on different clustering algorithms and developed a Shiny App with a particular configuration. Finally, we also provide an R package so that this framework can be used on different applications.

Suggested Citation

  • Morales-Oñate, Víctor & Morales-Oñate, Bolívar, 2024. "Cluster Evolution Analytics," MPRA Paper 120220, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:120220
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/120220/1/MPRA_paper_120220.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert J. Barro, 1991. "Economic Growth in a Cross Section of Countries," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 106(2), pages 407-443.
    2. Athey, Susan & Imbens, Guido W., 2019. "Machine Learning Methods Economists Should Know About," Research Papers 3776, Stanford University, Graduate School of Business.
    3. Croissant, Yves & Millo, Giovanni, 2008. "Panel Data Econometrics in R: The plm Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i02).
    4. Susan Athey & Guido W. Imbens, 2019. "Machine Learning Methods That Economists Should Know About," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 685-725, August.
    5. Philippe Aghion & Steven Durlauf (ed.), 2005. "Handbook of Economic Growth," Handbook of Economic Growth, Elsevier, edition 1, volume 1, number 1.
    6. Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carlos Mendez, 2019. "Lack of Global Convergence and the Formation of Multiple Welfare Clubs across Countries: An Unsupervised Machine Learning Approach," Economies, MDPI, vol. 7(3), pages 1-17, July.
    2. Jing Xing, 2011. "Does tax structure affect economic growth? Empirical evidence from OECD countries," Working Papers 1120, Oxford University Centre for Business Taxation.
    3. Roberto Martino & Phu Nguyen-Van, 2014. "Labour market regulation and fiscal parameters: A structural model for European regions," Working Papers of BETA 2014-19, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
    4. Labib Shami & Teddy Lazebnik, 2024. "Implementing Machine Learning Methods in Estimating the Size of the Non-observed Economy," Computational Economics, Springer;Society for Computational Economics, vol. 63(4), pages 1459-1476, April.
    5. Jeni Klugman & Francisco Rodríguez & Hyung-Jin Choi, 2011. "The HDI 2010: new controversies, old critiques," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 9(2), pages 249-288, June.
    6. Ay, Jean-Sauveur & Le Gallo, Julie, 2021. "The Signaling Values of Nested Wine Names," Working Papers 321851, American Association of Wine Economists.
    7. Magdalena Osińska & Tadeusz Kufel & Marcin Błażejowski & Paweł Kufel, 2020. "Modeling mechanism of economic growth using threshold autoregression models," Empirical Economics, Springer, vol. 58(3), pages 1381-1430, March.
    8. Chen, Ruoyu & Jiang, Hanchen & Quintero, Luis E., 2023. "Measuring the value of rent stabilization and understanding its implications for racial inequality: Evidence from New York City," Regional Science and Urban Economics, Elsevier, vol. 103(C).
    9. Dang, Hai-Anh & Carletto, Calogero & Gourlay, Sydney & Abanokova, Kseniya, 2024. "Addressing Soil Quality Data Gaps with Imputation: Evidence from Ethiopia and Uganda," GLO Discussion Paper Series 1445, Global Labor Organization (GLO).
    10. Julien Malizard, 2014. "Dépenses militaires et croissance économique dans un contexte non linéaire. Le cas français," Revue économique, Presses de Sciences-Po, vol. 65(3), pages 601-618.
    11. Steven N. Durlauf & Andros Kourtellos & Chih Ming Tan, 2008. "Empirics of Growth and Development," Chapters, in: Amitava Krishna Dutt & Jaime Ros (ed.), International Handbook of Development Economics, Volumes 1 & 2, volume 0, chapter 3, Edward Elgar Publishing.
    12. Rogers, Mark Llewellyn, 2008. "Directly unproductive schooling: How country characteristics affect the impact of schooling on growth," European Economic Review, Elsevier, vol. 52(2), pages 356-385, February.
    13. Michael S. Delgado & Daniel J. Henderson & Christopher F. Parmeter, 2014. "Does Education Matter for Economic Growth?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(3), pages 334-359, June.
    14. Ballestar, María Teresa & Mir, Miguel Cuerdo & Pedrera, Luis Miguel Doncel & Sainz, Jorge, 2024. "Effectiveness of tutoring at school: A machine learning evaluation," Technological Forecasting and Social Change, Elsevier, vol. 199(C).
    15. Duranton, Gilles & Puga, Diego, 2014. "The Growth of Cities," Handbook of Economic Growth, in: Philippe Aghion & Steven Durlauf (ed.), Handbook of Economic Growth, edition 1, volume 2, chapter 5, pages 781-853, Elsevier.
    16. Cheng-te Lee & Chen Fang & Kuo-hsing Kuo, 2014. "Common Market and Equilibrium Growth," Economics Bulletin, AccessEcon, vol. 34(1), pages 480-493.
    17. Tsang, Andrew, 2021. "Uncovering Heterogeneous Regional Impacts of Chinese Monetary Policy," MPRA Paper 110703, University Library of Munich, Germany.
    18. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP54/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    19. Gilles Duranton & Matthew A. Turner, 2012. "Urban Growth and Transportation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 79(4), pages 1407-1440.
    20. Daniel Goller, 2023. "Analysing a built-in advantage in asymmetric darts contests using causal machine learning," Annals of Operations Research, Springer, vol. 325(1), pages 649-679, June.

    More about this item

    Keywords

    clustering; temporal clustering; statistical profiles;
    All these keywords.

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:120220. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.