IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/11728.html
   My bibliography  Save this paper

Preference aggregation theory without acyclicity: The core without majority dissatisfaction

Author

Listed:
  • Kumabe, Masahiro
  • Mihara, H. Reiju

Abstract

Acyclicity of individual preferences is a minimal assumption in social choice theory. We replace that assumption by the direct assumption that preferences have maximal elements on a fixed agenda. We show that the core of a simple game is nonempty for all profiles of such preferences if and only if the number of alternatives in the agenda is less than the Nakamura number of the game. The same is true if we replace the core by the core without majority dissatisfaction, obtained by deleting from the agenda all the alternatives that are non-maximal for all players in a winning coalition. Unlike the core, the core without majority dissatisfaction depends only onthe players' sets of maximal elements and is included in the union of such sets. A result for an extended framework gives another sense in which the core without majority dissatisfaction behaves better than the core.

Suggested Citation

  • Kumabe, Masahiro & Mihara, H. Reiju, 2008. "Preference aggregation theory without acyclicity: The core without majority dissatisfaction," MPRA Paper 11728, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:11728
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/11728/1/MPRA_paper_11728.pdf
    File Function: original version
    Download Restriction: no

    File URL: https://mpra.ub.uni-muenchen.de/23918/2/MPRA_paper_23918.pdf
    File Function: revised version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Truchon M., 1996. "Voting games and acyclic collective choice rules," Mathematical Social Sciences, Elsevier, vol. 31(1), pages 55-55, February.
    2. John Duggan, 2007. "A systematic approach to the construction of non-empty choice sets," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 28(3), pages 491-506, April.
    3. Fishburn, Peter C., 1970. "Arrow's impossibility theorem: Concise proof and infinite voters," Journal of Economic Theory, Elsevier, vol. 2(1), pages 103-106, March.
    4. H. Reiju Mihara, 2000. "Coalitionally strategyproof functions depend only on the most-preferred alternatives," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 17(3), pages 393-402.
    5. Gil Kalai & Ariel Rubinstein & Ran Spiegler, 2002. "Rationalizing Choice Functions By Multiple Rationales," Econometrica, Econometric Society, vol. 70(6), pages 2481-2488, November.
    6. Attila Ambrus & Kareen Rozen, 2015. "Rationalising Choice with Multi‐self Models," Economic Journal, Royal Economic Society, vol. 125(585), pages 1136-1156, June.
    7. Andjiga, N G & Moulen, J, 1989. "Necessary and Sufficient Conditions for l-Stability of Games in Constitutional Form," International Journal of Game Theory, Springer;Game Theory Society, vol. 18(1), pages 91-110.
    8. Andjiga, Nicolas Gabriel & Mbih, Boniface, 2000. "A note on the core of voting games," Journal of Mathematical Economics, Elsevier, vol. 33(3), pages 367-372, April.
    9. Masahiro Kumabe & H. Reiju Mihara, 2008. "The Nakamura numbers for computable simple games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 31(4), pages 621-640, December.
    10. Attila Ambrus & Kareen Rozen, 2008. "Revealed Conflicting Preferences," Levine's Working Paper Archive 122247000000002161, David K. Levine.
    11. Andjiga, Nicolas Gabriel & Moyouwou, Issofa, 2006. "A note on the non-emptiness of the stability set when individual preferences are weak orders," Mathematical Social Sciences, Elsevier, vol. 52(1), pages 67-76, July.
    12. Banks, Jeffrey S. & Duggan, John & Le Breton, Michel, 2006. "Social choice and electoral competition in the general spatial model," Journal of Economic Theory, Elsevier, vol. 126(1), pages 194-234, January.
    13. Kumabe, Masahiro & Mihara, H. Reiju, 2008. "Computability of simple games: A characterization and application to the core," Journal of Mathematical Economics, Elsevier, vol. 44(3-4), pages 348-366, February.
    14. H. Reiju Mihara, 1997. "Arrow's Theorem and Turing computability," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 10(2), pages 257-276.
    15. Mathieu Martin & Vincent Merlin, 2006. "On The Chacteristic Numbers Of Voting Games," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 8(04), pages 643-654.
    16. Partha Dasgupta & Eric Maskin, 2008. "On The Robustness of Majority Rule," Journal of the European Economic Association, MIT Press, vol. 6(5), pages 949-973, September.
    17. Lipman, Barton L, 1991. "How to Decide How to Decide How to. . . : Modeling Limited Rationality," Econometrica, Econometric Society, vol. 59(4), pages 1105-1125, July.
    18. H. Reiju Mihara, 1997. "Arrow's Theorem, countably many agents, and more visible invisible dictators," Public Economics 9705001, University Library of Munich, Germany, revised 01 Jun 2004.
    19. Rubinstein, Ariel, 1980. "Stability of decision systems under majority rule," Journal of Economic Theory, Elsevier, vol. 23(2), pages 150-159, October.
    20. Elizabeth Penn, 2006. "The Banks Set in Infinite Spaces," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 27(3), pages 531-543, December.
    21. Le Breton, M & Salles, M, 1990. "The Stability Set of Voting Games: Classification and Genericity Results," International Journal of Game Theory, Springer;Game Theory Society, vol. 19(2), pages 111-127.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joseph Armel Momo Kenfack, 2022. "Committees under qualified majority rules: the one-core stability index," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 59(2), pages 401-422, August.
    2. Kumabe, Masahiro & Mihara, H. Reiju, 2011. "Computability of simple games: A complete investigation of the sixty-four possibilities," Journal of Mathematical Economics, Elsevier, vol. 47(2), pages 150-158, March.
    3. Momo Kenfack, Joseph Armel & Pongou, Roland & Tchantcho, Bertrand, 2014. "The stability of decision making in committees: The one-core," Economics Letters, Elsevier, vol. 122(3), pages 390-395.
    4. Mihara, H. Reiju, 2017. "Characterizing the Borda ranking rule for a fixed population," MPRA Paper 78093, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumabe, Masahiro & Mihara, H. Reiju, 2008. "Computability of simple games: A characterization and application to the core," Journal of Mathematical Economics, Elsevier, vol. 44(3-4), pages 348-366, February.
    2. Kumabe, Masahiro & Mihara, H. Reiju, 2011. "Computability of simple games: A complete investigation of the sixty-four possibilities," Journal of Mathematical Economics, Elsevier, vol. 47(2), pages 150-158, March.
    3. Masahiro Kumabe & H. Reiju Mihara, 2008. "The Nakamura numbers for computable simple games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 31(4), pages 621-640, December.
    4. Mihara, H. Reiju, 2004. "Nonanonymity and sensitivity of computable simple games," Mathematical Social Sciences, Elsevier, vol. 48(3), pages 329-341, November.
    5. Norbert Brunner & H. Reiju Mihara, 1999. "Arrow's theorem, Weglorz' models and the axiom of choice," Public Economics 9902001, University Library of Munich, Germany, revised 01 Jun 2004.
    6. Ricard Torres, 2002. "Smallness of Invisible Dictators," Working Papers 0213, Centro de Investigacion Economica, ITAM, revised Sep 2003.
    7. Diffo Lambo, Lawrence & Tchantcho, Bertrand & Moulen, Joël, 2009. "A core of voting games with improved foresight," Mathematical Social Sciences, Elsevier, vol. 58(2), pages 214-225, September.
    8. Andrei Gomberg & César Martinelli & Ricard Torres, 2005. "Anonymity in large societies," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 25(1), pages 187-205, October.
    9. Mathieu Martin & Vincent Merlin, 2006. "On The Chacteristic Numbers Of Voting Games," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 8(04), pages 643-654.
    10. Laurens Cherchye & Bram De Rock & Rachel Griffith & Martin O'Connell & Kate Smith & Frederic Vermeulen, 2017. "A New Year, a New You ?Heterogeneity and Self-control in Food Purchases," Working Papers ECARES ECARES 2017-46, ULB -- Universite Libre de Bruxelles.
    11. Manzini, Paola & Mariotti, Marco & Tyson, Christopher J., 2016. "Partial knowledge restrictions on the two-stage threshold model of choice," Journal of Mathematical Economics, Elsevier, vol. 64(C), pages 41-47.
    12. Shaofang Qi, 2016. "A characterization of the n-agent Pareto dominance relation," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 46(3), pages 695-706, March.
    13. Sophie Bade, 2016. "Pareto-optimal matching allocation mechanisms for boundedly rational agents," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 47(3), pages 501-510, October.
    14. SPRUMONT, Yves & EHLERS, Lars, 2005. "Top-Cycle Rationalizability," Cahiers de recherche 25-2005, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    15. Andjiga, Nicolas Gabriel & Moyouwou, Issofa, 2006. "A note on the non-emptiness of the stability set when individual preferences are weak orders," Mathematical Social Sciences, Elsevier, vol. 52(1), pages 67-76, July.
    16. Apesteguia, Jose & Ballester, Miguel A., 2013. "Choice by sequential procedures," Games and Economic Behavior, Elsevier, vol. 77(1), pages 90-99.
    17. Francesco Cerigioni, 2021. "Dual Decision Processes: Retrieving Preferences When Some Choices Are Automatic," Journal of Political Economy, University of Chicago Press, vol. 129(6), pages 1667-1704.
    18. , & ,, 2012. "Reason-based choice: a bargaining rationale for the attraction and compromise effects," Theoretical Economics, Econometric Society, vol. 7(1), January.
    19. Koji Takamiya & Akira Tanaka, 2016. "Computational complexity in the design of voting rules," Theory and Decision, Springer, vol. 80(1), pages 33-41, January.
    20. Roland Pongou & Lawrence Diffo Lambo & Bertrand Tchantcho, 2008. "Cooperation, stability and social welfare under majority rule," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 35(3), pages 555-574, June.

    More about this item

    Keywords

    Core; Nakamura number; kappa number; simple games; voting games; maximal elements; acyclic preferences; limit ordinals;
    All these keywords.

    JEL classification:

    • D71 - Microeconomics - - Analysis of Collective Decision-Making - - - Social Choice; Clubs; Committees; Associations
    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games
    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:11728. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.