IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/116457.html
   My bibliography  Save this paper

The per capita Shapley support levels value

Author

Listed:
  • Besner, Manfred

Abstract

The per capita Shapley support levels value extends the Shapley value to cooperative games with a level structure. This value prevents symmetrical groups of players of different sizes from being treated equally. We use efficiency, additivity, the null player property, and two new properties to give an axiomatic characterization. The first property, called joint productivity, is a fairness property within components and makes the difference to the Shapley levels value. If all players of two components are only jointly productive, they should receive the same payoff. Our second axiom, called neutral collusions, is a fairness axiom for players outside a component. Regardless of how players of a component organize their power, as long as the power of the coalitions that include all players of the component remains the same, the payoff to players outside the component does not change.

Suggested Citation

  • Besner, Manfred, 2023. "The per capita Shapley support levels value," MPRA Paper 116457, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:116457
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/116457/1/MPRA_paper_116457.pdf
    File Function: original version
    Download Restriction: no

    File URL: https://mpra.ub.uni-muenchen.de/116643/1/MPRA_paper_116643.pdf
    File Function: revised version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. McLean, Richard P, 1991. "Random Order Coalition Structure Values," International Journal of Game Theory, Springer;Game Theory Society, vol. 20(2), pages 109-127.
    2. Vidal-Puga, Juan, 2012. "The Harsanyi paradox and the “right to talk” in bargaining among coalitions," Mathematical Social Sciences, Elsevier, vol. 64(3), pages 214-224.
    3. AUMANN, Robert J. & DREZE, Jacques H., 1974. "Cooperative games with coalition structures," LIDAM Reprints CORE 217, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Gómez-Rúa, María & Vidal-Puga, Juan, 2010. "The axiomatic approach to three values in games with coalition structure," European Journal of Operational Research, Elsevier, vol. 207(2), pages 795-806, December.
    5. André Casajus & Rodrigue Tido Takeng, 2023. "Second-order productivity, second-order payoffs, and the Owen value," Annals of Operations Research, Springer, vol. 320(1), pages 1-13, January.
    6. Nowak, A.S. & Radzik, T., 1995. "On axiomatizations of the weighted Shapley values," Games and Economic Behavior, Elsevier, vol. 8(2), pages 389-405.
    7. Anna Khmelnitskaya & Elena Yanovskaya, 2007. "Owen coalitional value without additivity axiom," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 66(2), pages 255-261, October.
    8. Haller, Hans, 1994. "Collusion Properties of Values," International Journal of Game Theory, Springer;Game Theory Society, vol. 23(3), pages 261-281.
    9. Winter, Eyal, 1989. "A Value for Cooperative Games with Levels Structure of Cooperation," International Journal of Game Theory, Springer;Game Theory Society, vol. 18(2), pages 227-240.
    10. Ilya Segal, 2003. "Collusion, Exclusion, and Inclusion in Random-Order Bargaining," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 70(2), pages 439-460.
    11. Manfred Besner, 2022. "Harsanyi support levels solutions," Theory and Decision, Springer, vol. 93(1), pages 105-130, July.
    12. Calvo, Emilio & Javier Lasaga, J. & Winter, Eyal, 1996. "The principle of balanced contributions and hierarchies of cooperation," Mathematical Social Sciences, Elsevier, vol. 31(3), pages 171-182, June.
    13. María Gómez-Rúa & Juan Vidal-Puga, 2011. "Balanced per capita contributions and level structure of cooperation," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(1), pages 167-176, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Besner, Manfred, 2018. "Two classes of weighted values for coalition structures with extensions to level structures," MPRA Paper 87742, University Library of Munich, Germany.
    2. Besner, Manfred, 2018. "The weighted Shapley support levels values," MPRA Paper 87617, University Library of Munich, Germany.
    3. Besner, Manfred, 2017. "Weighted Shapley levels values," MPRA Paper 82978, University Library of Munich, Germany.
    4. Manfred Besner, 2022. "Harsanyi support levels solutions," Theory and Decision, Springer, vol. 93(1), pages 105-130, July.
    5. Besner, Manfred, 2018. "Weighted Shapley hierarchy levels values," MPRA Paper 88160, University Library of Munich, Germany.
    6. Xun-Feng Hu, 2020. "The weighted Shapley-egalitarian value for cooperative games with a coalition structure," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 193-212, April.
    7. Xun-Feng Hu & Deng-Feng Li, 2021. "The Equal Surplus Division Value for Cooperative Games with a Level Structure," Group Decision and Negotiation, Springer, vol. 30(6), pages 1315-1341, December.
    8. Gómez-Rúa, María & Vidal-Puga, Juan, 2010. "The axiomatic approach to three values in games with coalition structure," European Journal of Operational Research, Elsevier, vol. 207(2), pages 795-806, December.
    9. Xun-Feng Hu, 2021. "New axiomatizations of the Owen value," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(3), pages 585-603, June.
    10. André Casajus & Rodrigue Tido Takeng, 2022. "Second-order productivity, second-order payoffs, and the Owen value," Post-Print hal-03798448, HAL.
    11. Besner, Manfred, 2021. "Disjointly productive players and the Shapley value," MPRA Paper 108241, University Library of Munich, Germany.
    12. Besner, Manfred, 2021. "Disjointly and jointly productive players and the Shapley value," MPRA Paper 108511, University Library of Munich, Germany.
    13. María Gómez-Rúa & Juan Vidal-Puga, 2011. "Balanced per capita contributions and level structure of cooperation," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(1), pages 167-176, July.
    14. Yoshio Kamijo, 2013. "The collective value: a new solution for games with coalition structures," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(3), pages 572-589, October.
    15. Silvia Lorenzo-Freire, 2017. "New characterizations of the Owen and Banzhaf–Owen values using the intracoalitional balanced contributions property," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(3), pages 579-600, October.
    16. André Casajus & Rodrigue Tido Takeng, 2023. "Second-order productivity, second-order payoffs, and the Owen value," Annals of Operations Research, Springer, vol. 320(1), pages 1-13, January.
    17. Besner, Manfred, 2018. "Proportional Shapley levels values," MPRA Paper 87120, University Library of Munich, Germany.
    18. María Gómez-Rúa & Juan Vidal-Puga, 2014. "Bargaining and membership," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 800-814, July.
    19. Besner, Manfred, 2020. "Values for level structures with polynomial-time algorithms, relevant coalition functions, and general considerations," MPRA Paper 99355, University Library of Munich, Germany.
    20. Antonio Magaña & Francesc Carreras, 2018. "Coalition Formation and Stability," Group Decision and Negotiation, Springer, vol. 27(3), pages 467-502, June.

    More about this item

    Keywords

    Cooperative game; Level structure; Per capita Shapley support levels value; Joint productivity; Neutral collusions;
    All these keywords.

    JEL classification:

    • C7 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory
    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:116457. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.