IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/114968.html
   My bibliography  Save this paper

Макроэкономические Факторы Банкротства Компаний Обрабатывающей Отрасли В Российской Федерации
[Macroeconomic Factors of Corporate Bankruptcy in the Manufacturing Sector in the Russian Federation]

Author

Listed:
  • Bekirova, Olga
  • Zubarev, Andrey

Abstract

The paper presents the results of an econometric assessment of probabilistic default models on a sample of medium-sized manufacturing companies in Russia for the period from 2012 to 2020. Characteristics of the macroeconomic environment were included in the models. The inclusion of the real effective exchange rate, the growth rate of the exchange rate, the key interest rate or the price of Brent oil in real terms lead to an increase in the forecast power of the base model with internal factors only. The growth in the key interest rate and the price of oil increases the probability of a corporate default.

Suggested Citation

  • Bekirova, Olga & Zubarev, Andrey, 2022. "Макроэкономические Факторы Банкротства Компаний Обрабатывающей Отрасли В Российской Федерации [Macroeconomic Factors of Corporate Bankruptcy in the Manufacturing Sector in the Russian Federation]," MPRA Paper 114968, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:114968
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/114968/1/MPRA_paper_114968.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Демешев Борис Борисович & Тихонова Анна Сергеевна, 2014. "Прогнозирование Банкротства Российских Компаний: Межотраслевое Сравнение," Higher School of Economics Economic Journal Экономический журнал Высшей школы экономики, CyberLeninka;Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет «Высшая школа экономики», vol. 18(3), pages 359-386.
    2. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    3. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure - Reply," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 123-127.
    4. Christian Lohmann & Thorsten Ohliger, 2019. "Using accounting‐based information on young firms to predict bankruptcy," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(8), pages 803-819, December.
    5. Natalia Nehrebecka, 2021. "COVID-19: stress-testing non-financial companies: a macroprudential perspective. The experience of Poland," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 11(2), pages 283-319, June.
    6. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 71-111.
    7. repec:zbw:bofrdp:2004_018 is not listed on IDEAS
    8. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    9. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xavier Brédart & Eric Séverin & David Veganzones, 2021. "Human resources and corporate failure prediction modeling: Evidence from Belgium," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(7), pages 1325-1341, November.
    2. Shoukat Ali & Ramiz ur Rehman & Wang Yuan & Muhammad Ishfaq Ahmad & Rizwan Ali, 2022. "Does foreign institutional ownership mediate the nexus between board diversity and the risk of financial distress? A case of an emerging economy of China," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 12(3), pages 553-581, September.
    3. Olga A. Bekirova & Andrey V. Zubarev, 2022. "Оценка Вероятности Банкротства Компаний Обрабатывающей Промышленности С Учетом Макроэкономической Конъюнктуры," Russian Economic Development (in Russian), Gaidar Institute for Economic Policy, issue 12, pages 18-27, December.
    4. Olga A. Bekirova & Andrey V. Zubarev, 2022. "Estimating the Bankruptcy Probability of Manufacturing Companies Considering Macroeconomic Conditions [Оценка Вероятности Банкротства Компаний Обрабатывающей Промышленности С Учетом Макроэкономичес," Russian Economic Development, Gaidar Institute for Economic Policy, issue 12, pages 18-27, December.
    5. Bekirova, Olga & Zubarev, Andrey, 2022. "Эконометрический Анализ Факторов Банкротств Российских Компаний В Обрабатывающем Секторе [Econometric Analysis of Bankruptcy Factors for Russian Companies in the Manufacturing Industry]," MPRA Paper 114969, University Library of Munich, Germany.
    6. Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).
    7. Enrico Supino & Nicola Piras, 2022. "Le performance dei modelli di credit scoring in contesti di forte instabilit? macroeconomica: il ruolo delle Reti Neurali Artificiali," MANAGEMENT CONTROL, FrancoAngeli Editore, vol. 2022(2), pages 41-61.
    8. Le, Hong Hanh & Viviani, Jean-Laurent, 2018. "Predicting bank failure: An improvement by implementing a machine-learning approach to classical financial ratios," Research in International Business and Finance, Elsevier, vol. 44(C), pages 16-25.
    9. Ahsan Habib & Mabel D' Costa & Hedy Jiaying Huang & Md. Borhan Uddin Bhuiyan & Li Sun, 2020. "Determinants and consequences of financial distress: review of the empirical literature," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 60(S1), pages 1023-1075, April.
    10. Juraini Zainol Abidin & Nur Adiana Hiau Abdullah & Karren Lee-Hwei Khaw, 2020. "Predicting SMEs Failure: Logistic Regression vs Artificial Neural Network Models," Capital Markets Review, Malaysian Finance Association, vol. 28(2), pages 29-41.
    11. David Veganzones, 2022. "Corporate failure prediction using threshold‐based models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(5), pages 956-979, August.
    12. Amin Jan & Maran Marimuthu & Muhammad Kashif Shad & Haseeb ur-Rehman & Muhammad Zahid & Ahmad Ali Jan, 2019. "Bankruptcy profile of the Islamic and conventional banks in Malaysia: a post-crisis period analysis," Economic Change and Restructuring, Springer, vol. 52(1), pages 67-87, February.
    13. Juan García Lara & Beatriz Osma & Evi Neophytou, 2009. "Earnings quality in ex‐post failed firms," Accounting and Business Research, Taylor & Francis Journals, vol. 39(2), pages 119-138.
    14. Vladislav V. Afanasev & Yulia A. Tarasova, 2022. "Default Prediction for Housing and Utilities Management Firms Using Non-Financial Data," Finansovyj žhurnal — Financial Journal, Financial Research Institute, Moscow 125375, Russia, issue 6, pages 91-110, December.
    15. M. A. Lagesh & Maram Srikanth & Debashis Acharya, 2018. "Corporate Performance during Business Cycles: Evidence from Indian Manufacturing Firms," Global Business Review, International Management Institute, vol. 19(5), pages 1261-1274, October.
    16. Vidimlić Selma, 2019. "Innovated Altman’s Model as a Predictor of Malfunctioning of Small and Medium-Sized Businesses in Bosnia and Herzegovina," Economic Themes, Sciendo, vol. 57(1), pages 21-33, March.
    17. Marielle de Jong & Lauren Stagnol, 2016. "A fundamental bond index including solvency criteria," Journal of Asset Management, Palgrave Macmillan, vol. 17(4), pages 280-294, July.
    18. Duc Hong Vo & Binh Ninh Vo Pham & Chi Minh Ho & Michael McAleer, 2019. "Corporate Financial Distress of Industry Level Listings in Vietnam," JRFM, MDPI, vol. 12(4), pages 1-17, September.
    19. Tamara Ayœs, Armando Lenin & Villegas, Gladis Cecilia & Leones Castro, María Cristina & Salazar Bocanegra, Juan Antonio, 2018. "Modelaci—n del riesgo de insolvencia en empresas del sector salud empleando modelos logit || Modeling of Insolvency Risk in Health Sector Companies Using Logit Models," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 26(1), pages 128-145, Diciembre.
    20. Adler Haymans Manurung & Derwin Suhartono & Benny Hutahayan & Noptovius Halimawan, 2023. "Probability Bankruptcy Using Support Vector Regression Machines," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 13(1), pages 1-3.

    More about this item

    Keywords

    bankruptcies; probabilistic models; logistic regression; macroeconomic environment; external factors;
    All these keywords.

    JEL classification:

    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • G33 - Financial Economics - - Corporate Finance and Governance - - - Bankruptcy; Liquidation
    • L60 - Industrial Organization - - Industry Studies: Manufacturing - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:114968. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.