IDEAS home Printed from https://ideas.repec.org/p/pdn/ciepap/65.html
   My bibliography  Save this paper

Double-conditional smoothing of high-frequency volatility surface in a spatial multiplicative component GARCH with random effects

Author

Listed:
  • Yuanhua Feng

    (University of Paderborn)

Abstract

This paper introduces a spatial framework for high-frequency returns and a faster double-conditional smoothing algorithm to carry out bivariate kernel estimation of the volatility surface. A spatial multiplicative component GARCH with random effects is proposed to deal with multiplicative random effects found from the data. It is shown that the probabilistic properties of the stochastic part and the asymptotic properties of the kernel volatility surface estimator are all strongly affected by the multiplicative random effects. Data example shows that the volatility surface before, during and after the 2008 financial crisis forms a volatility saddle.

Suggested Citation

  • Yuanhua Feng, 2013. "Double-conditional smoothing of high-frequency volatility surface in a spatial multiplicative component GARCH with random effects," Working Papers CIE 65, Paderborn University, CIE Center for International Economics.
  • Handle: RePEc:pdn:ciepap:65
    as

    Download full text from publisher

    File URL: http://groups.uni-paderborn.de/wp-wiwi/RePEc/pdf/ciepap/WP65.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andersen, Torben G. & Bollerslev, Tim, 1997. "Intraday periodicity and volatility persistence in financial markets," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 115-158, June.
    2. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    3. Heiler, Siegfried & Feng, Yuanhua, 1997. "A bootstrap bandwidth selector for local polynomial fitting," Discussion Papers, Series II 344, University of Konstanz, Collaborative Research Centre (SFB) 178 "Internationalization of the Economy".
    4. Feng, Yuanhua & McNeil, Alexander J., 2008. "Modelling of scale change, periodicity and conditional heteroskedasticity in return volatility," Economic Modelling, Elsevier, vol. 25(5), pages 850-867, September.
    5. Feng, Yuanhua, 2004. "Simultaneously Modeling Conditional Heteroskedasticity And Scale Change," Econometric Theory, Cambridge University Press, vol. 20(3), pages 563-596, June.
    6. Heiler, Siegfried & Feng, Yuanhua, 1995. "A simple root n bandwidth selector for nonparametric regression," Discussion Papers, Series II 286, University of Konstanz, Collaborative Research Centre (SFB) 178 "Internationalization of the Economy".
    7. repec:bla:jfinan:v:53:y:1998:i:1:p:219-265 is not listed on IDEAS
    8. Andersen, Torben G. & Bollerslev, Tim & Cai, Jun, 2000. "Intraday and interday volatility in the Japanese stock market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 10(2), pages 107-130, June.
    9. Härdle, Wolfgang & Tsybakov, A. & Yang, L., 1996. "Nonparametric Vector Autoregression," SFB 373 Discussion Papers 1996,61, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuanhua Feng & Sarah Forstinger & Christian Peitz, 2013. "On the iterative plug-in algorithm for estimating diurnal patterns of financial trade durations," Working Papers CIE 66, Paderborn University, CIE Center for International Economics.
    2. Bastian Schäfer, 2021. "Bandwidth selection for the Local Polynomial Double Conditional Smoothing under Spatial ARMA Errors," Working Papers CIE 146, Paderborn University, CIE Center for International Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stavros Degiannakis & Evdokia Xekalaki, 2007. "Assessing the performance of a prediction error criterion model selection algorithm in the context of ARCH models," Applied Financial Economics, Taylor & Francis Journals, vol. 17(2), pages 149-171.
    2. Yusaku Nishimura & Yoshiro Tsutsui & Kenjiro Hirayama, 2016. "The Chinese Stock Market Does not React to the Japanese Market: Using Intraday Data to Analyse Return and Volatility Spillover Effects," The Japanese Economic Review, Springer, vol. 67(3), pages 280-294, September.
    3. Faten Ben Slimane & Mohamed Mehanaoui & Irfan A. Kazi, 2014. "Interdependency and Spillover during the Financial Crisis of 2007 to 2009 – Evidence from High Frequency Intraday Data," Working Papers 2014-126, Department of Research, Ipag Business School.
    4. Haniff, Mohd Nizal & Pok, Wee Ching, 2010. "Intraday volatility and periodicity in the Malaysian stock returns," Research in International Business and Finance, Elsevier, vol. 24(3), pages 329-343, September.
    5. Niklas Ahlgren & Alexander Back & Timo Terasvirta, 2024. "A new GARCH model with a deterministic time-varying intercept," Papers 2410.03239, arXiv.org, revised Oct 2024.
    6. Cristina Amado & Annastiina Silvennoinen & Timo Teräsvirta, 2018. "Models with Multiplicative Decomposition of Conditional Variances and Correlations," CREATES Research Papers 2018-14, Department of Economics and Business Economics, Aarhus University.
    7. Chu, Carlin C.F. & Lam, K.P., 2011. "Modeling intraday volatility: A new consideration," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 21(3), pages 388-418, July.
    8. Esparcia, Carlos & López, Raquel, 2024. "Performance of crypto-Forex portfolios based on intraday data," Research in International Business and Finance, Elsevier, vol. 69(C).
    9. repec:pdn:ciepap:104 is not listed on IDEAS
    10. Nishimura, Yusaku & Tsutsui, Yoshiro & Hirayama, Kenjiro, 2015. "Intraday return and volatility spillover mechanism from Chinese to Japanese stock market," Journal of the Japanese and International Economies, Elsevier, vol. 35(C), pages 23-42.
    11. Feng, Yuanhua, 2006. "A local dynamic conditional correlation model," MPRA Paper 1592, University Library of Munich, Germany.
    12. Gau, Yin-Feng, 2005. "Intraday volatility in the Taipei FX market," Pacific-Basin Finance Journal, Elsevier, vol. 13(4), pages 471-487, September.
    13. Anagnostidis, Panagiotis & Emmanouilides, Christos J., 2015. "Nonlinearity in high-frequency stock returns: Evidence from the Athens Stock Exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 473-487.
    14. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2017. "Decoupling the short- and long-term behavior of stochastic volatility," CREATES Research Papers 2017-26, Department of Economics and Business Economics, Aarhus University.
    15. Denisa Banulescu-Radu & Christophe Hurlin & Bertrand Candelon & Sébastien Laurent, 2016. "Do We Need High Frequency Data to Forecast Variances?," Annals of Economics and Statistics, GENES, issue 123-124, pages 135-174.
    16. Nour Meddahi, 2002. "A theoretical comparison between integrated and realized volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 479-508.
    17. Peter Malec, 2016. "A Semiparametric Intraday GARCH Model," Cambridge Working Papers in Economics 1633, Faculty of Economics, University of Cambridge.
    18. Hussain, Syed Mujahid, 2011. "Simultaneous monetary policy announcements and international stock markets response: An intraday analysis," Journal of Banking & Finance, Elsevier, vol. 35(3), pages 752-764, March.
    19. Amélie Charles & Olivier Darné & Laurent Ferrara, 2018. "Does The Great Recession Imply The End Of The Great Moderation? International Evidence," Economic Inquiry, Western Economic Association International, vol. 56(2), pages 745-760, April.
    20. Silvio Colarossi & Andrea Zaghini, 2009. "Gradualism, Transparency and the Improved Operational Framework: A Look at Overnight Volatility Transmission," International Finance, Wiley Blackwell, vol. 12(2), pages 151-170, August.
    21. Beran, Jan & Feng, Yuanhua, 2002. "Recent Developments in Non- and Semiparametric Regression with Fractional Time Series Errors," CoFE Discussion Papers 02/13, University of Konstanz, Center of Finance and Econometrics (CoFE).

    More about this item

    Keywords

    Spatial multiplicative component GARCH; high-frequency returns; double-conditional smoothing; multiplicative random effect; volatility arch; volatility saddle.;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pdn:ciepap:65. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: WP-WiWi-Info or the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/cipadde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.