IDEAS home Printed from https://ideas.repec.org/p/osf/socarx/qj83z.html
   My bibliography  Save this paper

The computational power of a human society: a new model of social evolution

Author

Listed:
  • Wolpert, David
  • Harper, Kyle

Abstract

Social evolutionary theory seeks to explain increases in the scale and complexity of human societies, from origins to present. Over the course of the twentieth century, social evolutionary theory largely fell out of favor as a way of investigating human history, just as advances in complex systems science and computer science saw the emergence of powerful new conceptions of complex systems, and in particular new methods of measuring complexity. We propose that these advances in our understanding of complex systems and computer science should be brought to bear on our investigations into human history. To that end, we present a new framework for modeling how human societies co-evolve with their biotic environments, recognizing that both a society and its environment are computers. This leads us to model the dynamics of each of those two systems using the same, new kind of computational machine, which we define here. For simplicity, we construe a society as a set of interacting occupations and technologies. Similarly, under such a model, a biotic environment is a set of interacting distinct ecological and climatic processes. This provides novel ways to characterize social complexity, which we hope will cast new light on the archaeological and historical records. Our framework also provides a natural way to formalize both the energetic (thermodynamic) costs required by a society as it runs, and the ways it can extract thermodynamic resources from the environment in order to pay for those costs — and perhaps to grow with any left-over resources.

Suggested Citation

  • Wolpert, David & Harper, Kyle, 2024. "The computational power of a human society: a new model of social evolution," SocArXiv qj83z, Center for Open Science.
  • Handle: RePEc:osf:socarx:qj83z
    DOI: 10.31219/osf.io/qj83z
    as

    Download full text from publisher

    File URL: https://osf.io/download/66b63f16bd83797e25a1b8aa/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/qj83z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gary S. Becker & Kevin M. Murphy, 1994. "The Division of Labor, Coordination Costs, and Knowledge," NBER Chapters, in: Human Capital: A Theoretical and Empirical Analysis with Special Reference to Education, Third Edition, pages 299-322, National Bureau of Economic Research, Inc.
    2. Charles I. Jones, 2002. "Sources of U.S. Economic Growth in a World of Ideas," American Economic Review, American Economic Association, vol. 92(1), pages 220-239, March.
    3. Geoffrey B. West & James H. Brown & Brian J. Enquist, 1997. "A General Model for the Origin of Allometric Scaling Laws in Biology," Working Papers 97-03-019, Santa Fe Institute.
    4. Oded Galor, 2011. "Unified Growth Theory and Comparative Development," Rivista di Politica Economica, SIPI Spa, issue 2, pages 9-21, April-Jun.
    5. Brian J. Enquist & James H. Brown & Geoffrey B. West, 1998. "Allometric scaling of plant energetics and population density," Nature, Nature, vol. 395(6698), pages 163-165, September.
    6. Romer, Paul M, 1990. "Endogenous Technological Change," Journal of Political Economy, University of Chicago Press, vol. 98(5), pages 71-102, October.
    7. Brian J. Enquist & James H. Brown & Geoffrey B. West, 1998. "Allometric Scaling of Plant Energetics and Population Density," Working Papers 98-11-104, Santa Fe Institute.
    8. Oded Galor, 2011. "Unified Growth Theory," Economics Books, Princeton University Press, edition 1, number 9477.
    9. Jaeweon Shin & Michael Holton Price & David H. Wolpert & Hajime Shimao & Brendan Tracey & Timothy A. Kohler, 2020. "Scale and information-processing thresholds in Holocene social evolution," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David H. Wolpert & Kyle Harper, 2024. "The computational power of a human society: a new model of social evolution," Papers 2408.08861, arXiv.org.
    2. Werner, Katharina & Prettner, Klaus, 2014. "Human capital, basic research, and applied research: three dimensions of human knowledge and their differential growth effects," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100448, Verein für Socialpolitik / German Economic Association.
    3. Michela Giorcelli & Nicola Lacetera & Astrid Marinoni, 2022. "How does scientific progress affect cultural changes? A digital text analysis," Journal of Economic Growth, Springer, vol. 27(3), pages 415-452, September.
    4. William F. Maloney & Felipe Valencia Caicedo, 2017. "Engineering Growth: Innovative Capacity and Development in the Americas," CESifo Working Paper Series 6339, CESifo.
    5. Gerlagh, Reyer, 2023. "Climate, technology, family size; on the crossroad between two ultimate externalities," European Economic Review, Elsevier, vol. 152(C).
    6. Boikos, Spyridon & Bucci, Alberto & Stengos, Thanasis, 2022. "Leisure and innovation in horizontal R&D-based growth," Economic Modelling, Elsevier, vol. 107(C).
    7. Kawalec Paweł, 2020. "The dynamics of theories of economic growth: An impact of Unified Growth Theory," Economics and Business Review, Sciendo, vol. 6(2), pages 19-44, June.
    8. Chen, Yanguang, 2014. "An allometric scaling relation based on logistic growth of cities," Chaos, Solitons & Fractals, Elsevier, vol. 65(C), pages 65-77.
    9. Li, Defu & Bental, Benjamin, 2023. "What determines the Direction of Technological Progress(2023.11.16)?," MPRA Paper 119211, University Library of Munich, Germany, revised 16 Nov 2023.
    10. Strulik, Holger & Werner, Katharina, 2014. "Elite education, mass education, and the transition to modern growth," University of Göttingen Working Papers in Economics 205, University of Goettingen, Department of Economics.
    11. Bloom, David E. & Canning, David & Kotschy, Rainer & Prettner, Klaus & Schünemann, Johannes, 2024. "Health and economic growth: Reconciling the micro and macro evidence," World Development, Elsevier, vol. 178(C).
    12. David de la Croix & Matthias Doepke & Joel Mokyr, 2018. "Clans, Guilds, and Markets: Apprenticeship Institutions and Growth in the Preindustrial Economy," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 133(1), pages 1-70.
    13. Chu, Angus C. & Xu, Rongxin, 2024. "From Neolithic Revolution to industrialization," Macroeconomic Dynamics, Cambridge University Press, vol. 28(3), pages 699-717, April.
    14. Martin Fiszbein, 2017. "Agricultural Diversity, Structural Change and Long-run Development: Evidence from the U.S," NBER Working Papers 23183, National Bureau of Economic Research, Inc.
    15. Chu, Angus C. & Peretto, Pietro F., 2023. "Innovation and inequality from stagnation to growth," European Economic Review, Elsevier, vol. 160(C).
    16. Prettner, Klaus & Strulik, Holger, 2020. "Innovation, automation, and inequality: Policy challenges in the race against the machine," Journal of Monetary Economics, Elsevier, vol. 116(C), pages 249-265.
    17. Chu, Angus C. & Furukawa, Yuichi & Wang, Xilin, 2022. "Rent-seeking government and endogenous takeoff in a Schumpeterian economy," Journal of Macroeconomics, Elsevier, vol. 72(C).
    18. Gregory Casey & Ryo Horii, 2019. "A Multi-factor Uzawa Growth Theorem and Endogenous Capital-Augmenting Technological Change," ISER Discussion Paper 1051, Institute of Social and Economic Research, Osaka University.
    19. Adrian Palacios-Mateo, 2023. "Education and household decision-making in Spanish mining communities, 1877–1924," Cliometrica, Springer;Cliometric Society (Association Francaise de Cliométrie), vol. 17(2), pages 301-340, May.
    20. Siskova, M. & Kuhn, M. & Prettner, K. & Prskawetz, A., 2023. "Does human capital compensate for population decline?," The Journal of the Economics of Ageing, Elsevier, vol. 26(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:socarx:qj83z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://arabixiv.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.