IDEAS home Printed from https://ideas.repec.org/p/osf/socarx/a4d63.html
   My bibliography  Save this paper

When Will Workers Follow an Algorithm?: A Field Experiment with a Retail Business

Author

Listed:
  • Kawaguchi, Kohei

Abstract

This paper develops a new algorithm for increasing the revenue in a dynamic product assortment problem. Then, it identifies the challenges faced by managers in practice and discusses the conditions under which workers follow the algorithm. To do so, I conducted a field experiment with a beverage vending machine business. The experiment shows that, on average, workers are reluctant to follow the algorithmic advice; however, the workers are more willing to conform once their forecasts are integrated into the algorithm. Analyses using non-experimental variations highlight the importance of taking worker and context heterogeneity into account to maximize the benefit from adopting a new algorithm. Higher worker's regret, sales volatility, and fewer delegations increase the conformity, while they mitigate the effects of integration. Workers avoid high-traffic vending machines and focus on machines with high sales volatility when adopting the algorithm. The effects on the sales are largely similar to the effects on product assortments. The results emphasize the gap between nominal and actual performance of an algorithm and several practical issues to be resolved.

Suggested Citation

  • Kawaguchi, Kohei, 2019. "When Will Workers Follow an Algorithm?: A Field Experiment with a Retail Business," SocArXiv a4d63, Center for Open Science.
  • Handle: RePEc:osf:socarx:a4d63
    DOI: 10.31219/osf.io/a4d63
    as

    Download full text from publisher

    File URL: https://osf.io/download/630eac95a5bae3030bb6b022/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/a4d63?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Felipe Caro & Jérémie Gallien, 2007. "Dynamic Assortment with Demand Learning for Seasonal Consumer Goods," Management Science, INFORMS, vol. 53(2), pages 276-292, February.
    2. Tülin Erdem & Michael P. Keane & Baohong Sun, 2008. "A Dynamic Model of Brand Choice When Price and Advertising Signal Product Quality," Marketing Science, INFORMS, vol. 27(6), pages 1111-1125, 11-12.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kohei Kawaguchi, 2021. "When Will Workers Follow an Algorithm? A Field Experiment with a Retail Business," Management Science, INFORMS, vol. 67(3), pages 1670-1695, March.
    2. Santiago R. Balseiro & David B. Brown & Chen Chen, 2021. "Dynamic Pricing of Relocating Resources in Large Networks," Management Science, INFORMS, vol. 67(7), pages 4075-4094, July.
    3. Qi Chen & Qi Xu & Wenjie Wang, 2019. "Optimal Policies for the Pricing and Replenishment of Fashion Apparel considering the Effect of Fashion Level," Complexity, Hindawi, vol. 2019, pages 1-12, February.
    4. Laurent Cavenaile & Pau Roldan-Blanco, 2021. "Advertising, Innovation, and Economic Growth," American Economic Journal: Macroeconomics, American Economic Association, vol. 13(3), pages 251-303, July.
    5. Jie Bai, 2016. "Melons as Lemons: Asymmetric Information, Consumer Learning and Seller Reputation," Natural Field Experiments 00540, The Field Experiments Website.
    6. Aguirregabiria, Victor & Gu, Jiaying & Luo, Yao, 2021. "Sufficient statistics for unobserved heterogeneity in structural dynamic logit models," Journal of Econometrics, Elsevier, vol. 223(2), pages 280-311.
    7. Raluca M. Ursu & Qingliang Wang & Pradeep K. Chintagunta, 2020. "Search Duration," Marketing Science, INFORMS, vol. 39(5), pages 849-871, September.
    8. Ali Fattahi & Sriram Dasu & Reza Ahmadi, 2019. "Mass Customization and “Forecasting Options’ Penetration Rates Problem”," Operations Research, INFORMS, vol. 67(4), pages 1120-1134, July.
    9. Ching, Andrew T. & Erdem, Tülin & Keane, Michael P., 2014. "A simple method to estimate the roles of learning, inventories and category consideration in consumer choice," Journal of choice modelling, Elsevier, vol. 13(C), pages 60-72.
    10. Mingyu Joo & Dinesh K. Gauri & Kenneth C. Wilbur, 2020. "Temporal Distance and Price Responsiveness: Empirical Investigation of the Cruise Industry," Management Science, INFORMS, vol. 66(11), pages 5362-5388, November.
    11. Cambier, Fanny & Poncin, Ingrid, 2020. "Inferring brand integrity from marketing communications: The effects of brand transparency signals in a consumer empowerment context," Journal of Business Research, Elsevier, vol. 109(C), pages 260-270.
    12. Min Chung Han, 2021. "Thumbs down on “likes”? The impact of Facebook reactions on online consumers’ nonprofit engagement behavior," International Review on Public and Nonprofit Marketing, Springer;International Association of Public and Non-Profit Marketing, vol. 18(2), pages 255-272, June.
    13. Victor F. Araman & René A. Caldentey, 2022. "Diffusion Approximations for a Class of Sequential Experimentation Problems," Management Science, INFORMS, vol. 68(8), pages 5958-5979, August.
    14. Wen, Xin & Choi, Tsan-Ming & Chung, Sai-Ho, 2019. "Fashion retail supply chain management: A review of operational models," International Journal of Production Economics, Elsevier, vol. 207(C), pages 34-55.
    15. Song Lin & Juanjuan Zhang & John R. Hauser, 2015. "Learning from Experience, Simply," Marketing Science, INFORMS, vol. 34(1), pages 1-19, January.
    16. Andrew T. Ching & Tülin Erdem & Michael P. Keane, 2020. "How much do consumers know about the quality of products? Evidence from the diaper market," The Japanese Economic Review, Springer, vol. 71(4), pages 541-569, October.
    17. Boccali, Filippo & Mariani, Marcello M. & Visani, Franco & Mora-Cruz, Alexandra, 2022. "Innovative value-based price assessment in data-rich environments: Leveraging online review analytics through Data Envelopment Analysis to empower managers and entrepreneurs," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    18. Guofang Huang & Hong Luo & Jing Xia, 2019. "Invest in Information or Wing It? A Model of Dynamic Pricing with Seller Learning," Management Science, INFORMS, vol. 65(12), pages 5556-5583, December.
    19. Meng, Charlotte C., 2023. "The price paid: Heuristic thinking and biased reference points in the housing market," Journal of Urban Economics, Elsevier, vol. 134(C).
    20. Felipe Caro & Victor Martínez-de-Albéniz & Paat Rusmevichientong, 2014. "The Assortment Packing Problem: Multiperiod Assortment Planning for Short-Lived Products," Management Science, INFORMS, vol. 60(11), pages 2701-2721, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:socarx:a4d63. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://arabixiv.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.