IDEAS home Printed from https://ideas.repec.org/p/osf/osfxxx/w7n26.html
   My bibliography  Save this paper

Maintaining Financial Data Quality For Business Intelligence

Author

Listed:
  • Hariharan, Naveen Kunnathuvalappil

Abstract

Only when the input data is reliable can mathematical models and business intelligence systems for decisionmaking produce accurate and effective outputs. However, data taken from primary sources and gathered in a data mart may contain several anomalies that analysts must identify and correct. This research covers the activities involved in creating a high-quality dataset for business intelligence and data mining. Three techniques are addressed to achieve this goal: data validation, which detects and reduce anomalies and inconsistencies; data modification, which enhances the precision and robustness of learning algorithms; and data reduction, which produces a set of data with fewer characteristics and records but is just as insightful as the original dataset.

Suggested Citation

  • Hariharan, Naveen Kunnathuvalappil, 2019. "Maintaining Financial Data Quality For Business Intelligence," OSF Preprints w7n26, Center for Open Science.
  • Handle: RePEc:osf:osfxxx:w7n26
    DOI: 10.31219/osf.io/w7n26
    as

    Download full text from publisher

    File URL: https://osf.io/download/6138e11a28b37600c17cf6a1/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/w7n26?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Y Liu & M Schumann, 2005. "Data mining feature selection for credit scoring models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(9), pages 1099-1108, September.
    2. Al-Najjar, Basim & Alsyouf, Imad, 2003. "Selecting the most efficient maintenance approach using fuzzy multiple criteria decision making," International Journal of Production Economics, Elsevier, vol. 84(1), pages 85-100, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pinjala, Srinivas Kumar & Pintelon, Liliane & Vereecke, Ann, 2006. "An empirical investigation on the relationship between business and maintenance strategies," International Journal of Production Economics, Elsevier, vol. 104(1), pages 214-229, November.
    2. Hsu-Lin Chen & Yi-Chung Hu & Ming-Yen Lee, 2021. "Evaluating Appointment of Division Managers Using Fuzzy Multiple Attribute Decision Making," Mathematics, MDPI, vol. 9(19), pages 1-24, September.
    3. Crone, Sven F. & Finlay, Steven, 2012. "Instance sampling in credit scoring: An empirical study of sample size and balancing," International Journal of Forecasting, Elsevier, vol. 28(1), pages 224-238.
    4. Lkhagvadorj Munkhdalai & Tsendsuren Munkhdalai & Oyun-Erdene Namsrai & Jong Yun Lee & Keun Ho Ryu, 2019. "An Empirical Comparison of Machine-Learning Methods on Bank Client Credit Assessments," Sustainability, MDPI, vol. 11(3), pages 1-23, January.
    5. Baraldi, Piero & Podofillini, Luca & Mkrtchyan, Lusine & Zio, Enrico & Dang, Vinh N., 2015. "Comparing the treatment of uncertainty in Bayesian networks and fuzzy expert systems used for a human reliability analysis application," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 176-193.
    6. Agustin Pérez-Martín & Agustin Pérez-Torregrosa & Alejandro Rabasa & Marta Vaca, 2020. "Feature Selection to Optimize Credit Banking Risk Evaluation Decisions for the Example of Home Equity Loans," Mathematics, MDPI, vol. 8(11), pages 1-16, November.
    7. Njeru, Andrew Kioi, 2022. "Asset quality assessment in the absence of quality data towards optimal credit intermediation," KBA Centre for Research on Financial Markets and Policy Working Paper Series 63, Kenya Bankers Association (KBA).
    8. Juan Laborda & Seyong Ryoo, 2021. "Feature Selection in a Credit Scoring Model," Mathematics, MDPI, vol. 9(7), pages 1-22, March.
    9. Goodell, John W. & Kumar, Satish & Lim, Weng Marc & Pattnaik, Debidutta, 2021. "Artificial intelligence and machine learning in finance: Identifying foundations, themes, and research clusters from bibliometric analysis," Journal of Behavioral and Experimental Finance, Elsevier, vol. 32(C).
    10. María Carmen Carnero & Andrés Gómez, 2019. "Optimization of Decision Making in the Supply of Medicinal Gases Used in Health Care," Sustainability, MDPI, vol. 11(10), pages 1-31, May.
    11. Wu, Kuo-Jui & Liao, Ching-Jong & Tseng, Ming-Lang & Chiu, Anthony S.F., 2015. "Exploring decisive factors in green supply chain practices under uncertainty," International Journal of Production Economics, Elsevier, vol. 159(C), pages 147-157.
    12. K A H Kobbacy & S Vadera & M H Rasmy, 2007. "AI and OR in management of operations: history and trends," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(1), pages 10-28, January.
    13. Priyank Srivastava & Dinesh Khanduja & V. P. Agrawal, 2020. "Agile maintenance attribute coding and evaluation based decision making in sugar manufacturing plant," OPSEARCH, Springer;Operational Research Society of India, vol. 57(2), pages 553-583, June.
    14. Huang, Weilun & Zhang, Qi, 2020. "Selecting the optimal economic crop in minority regions with the criteria about soil and water conservation," Agricultural Water Management, Elsevier, vol. 241(C).
    15. Ioannis Dagkinis & Nikitas Nikitakos, 2013. "Enhance of ship safety based on maintenance strategies by applying of Analytic Hierarchy Process," SPOUDAI Journal of Economics and Business, SPOUDAI Journal of Economics and Business, University of Piraeus, vol. 63(3-4), pages 26-36, July.
    16. Lin, Ching-Torng & Chiu, Hero & Tseng, Yi-Hong, 2006. "Agility evaluation using fuzzy logic," International Journal of Production Economics, Elsevier, vol. 101(2), pages 353-368, June.
    17. Al-Najjar, Basim, 2007. "The lack of maintenance and not maintenance which costs: A model to describe and quantify the impact of vibration-based maintenance on company's business," International Journal of Production Economics, Elsevier, vol. 107(1), pages 260-273, May.
    18. Wang, Ling & Chu, Jian & Wu, Jun, 2007. "Selection of optimum maintenance strategies based on a fuzzy analytic hierarchy process," International Journal of Production Economics, Elsevier, vol. 107(1), pages 151-163, May.
    19. Alsyouf, Imad, 2009. "Maintenance practices in Swedish industries: Survey results," International Journal of Production Economics, Elsevier, vol. 121(1), pages 212-223, September.
    20. Dowlatshahi, Shad, 2008. "The role of industrial maintenance in the maquiladora industry: An empirical analysis," International Journal of Production Economics, Elsevier, vol. 114(1), pages 298-307, July.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:w7n26. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.