IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i11p1971-d440863.html
   My bibliography  Save this article

Feature Selection to Optimize Credit Banking Risk Evaluation Decisions for the Example of Home Equity Loans

Author

Listed:
  • Agustin Pérez-Martín

    (Economic and Financial Studies Department, Miguel Hernández University of Elche, 03202 Elche, Spain
    These authors contributed equally to this work.)

  • Agustin Pérez-Torregrosa

    (Economic and Financial Studies Department, Miguel Hernández University of Elche, 03202 Elche, Spain
    These authors contributed equally to this work.)

  • Alejandro Rabasa

    (Operations Research Center, Miguel Hernández University of Elche, 03202 Elche, Spain
    These authors contributed equally to this work.)

  • Marta Vaca

    (Economic and Financial Studies Department, Miguel Hernández University of Elche, 03202 Elche, Spain
    These authors contributed equally to this work.)

Abstract

Measuring credit risk is essential for financial institutions because there is a high risk level associated with incorrect credit decisions. The Basel II agreement recommended the use of advanced credit scoring methods in order to improve the efficiency of capital allocation. The latest Basel agreement (Basel III) states that the requirements for reserves based on risk have increased. Financial institutions currently have exhaustive datasets regarding their operations; this is a problem that can be addressed by applying a good feature selection method combined with big data techniques for data management. A comparative study of selection techniques is conducted in this work to find the selector that reduces the mean square error and requires the least execution time.

Suggested Citation

  • Agustin Pérez-Martín & Agustin Pérez-Torregrosa & Alejandro Rabasa & Marta Vaca, 2020. "Feature Selection to Optimize Credit Banking Risk Evaluation Decisions for the Example of Home Equity Loans," Mathematics, MDPI, vol. 8(11), pages 1-16, November.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:11:p:1971-:d:440863
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/11/1971/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/11/1971/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Y Liu & M Schumann, 2005. "Data mining feature selection for credit scoring models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(9), pages 1099-1108, September.
    2. Steenackers, A. & Goovaerts, M. J., 1989. "A credit scoring model for personal loans," Insurance: Mathematics and Economics, Elsevier, vol. 8(1), pages 31-34, March.
    3. B Baesens & T Van Gestel & S Viaene & M Stepanova & J Suykens & J Vanthienen, 2003. "Benchmarking state-of-the-art classification algorithms for credit scoring," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(6), pages 627-635, June.
    4. D. J. Hand & W. E. Henley, 1997. "Statistical Classification Methods in Consumer Credit Scoring: a Review," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 160(3), pages 523-541, September.
    5. Loterman, Gert & Brown, Iain & Martens, David & Mues, Christophe & Baesens, Bart, 2012. "Benchmarking regression algorithms for loss given default modeling," International Journal of Forecasting, Elsevier, vol. 28(1), pages 161-170.
    6. Yu, Lean & Wang, Shouyang & Lai, Kin Keung, 2009. "An intelligent-agent-based fuzzy group decision making model for financial multicriteria decision support: The case of credit scoring," European Journal of Operational Research, Elsevier, vol. 195(3), pages 942-959, June.
    7. Lean Yu, 2014. "Credit Risk Evaluation with a Least Squares Fuzzy Support Vector Machines Classifier," Discrete Dynamics in Nature and Society, Hindawi, vol. 2014, pages 1-9, June.
    8. M. Almiñana & L. Escudero & A. Pérez-Martín & A. Rabasa & L. Santamaría, 2014. "A classification rule reduction algorithm based on significance domains," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 397-418, April.
    9. Pérez-Martín, A. & Pérez-Torregrosa, A. & Vaca, M., 2018. "Big Data techniques to measure credit banking risk in home equity loans," Journal of Business Research, Elsevier, vol. 89(C), pages 448-454.
    10. Ochoa P., Juan Camilo & Galeano M., Wilinton & Agudelo V., Luis Gabriel, 2010. "Construcción de un modelo de scoring para el otorgamiento de crédito en una entidad financiera," Perfil de Coyuntura Económica, Universidad de Antioquia, CIE, November.
    11. David Durand, 1941. "Risk Elements in Consumer Instalment Financing," NBER Books, National Bureau of Economic Research, Inc, number dura41-1, June.
    12. Finlay, Steven, 2011. "Multiple classifier architectures and their application to credit risk assessment," European Journal of Operational Research, Elsevier, vol. 210(2), pages 368-378, April.
    13. Malhotra, Rashmi & Malhotra, D. K., 2003. "Evaluating consumer loans using neural networks," Omega, Elsevier, vol. 31(2), pages 83-96, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wangwang Yan & Jing Ba & Taihua Xu & Hualong Yu & Jinlong Shi & Bin Han, 2022. "Beam-Influenced Attribute Selector for Producing Stable Reduct," Mathematics, MDPI, vol. 10(4), pages 1-20, February.
    2. Maria Patricia Durango‐Gutiérrez & Juan Lara‐Rubio & Andrés Navarro‐Galera, 2023. "Analysis of default risk in microfinance institutions under the Basel III framework," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(2), pages 1261-1278, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hussein A. Abdou & John Pointon, 2011. "Credit Scoring, Statistical Techniques And Evaluation Criteria: A Review Of The Literature," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 18(2-3), pages 59-88, April.
    2. Lessmann, Stefan & Baesens, Bart & Seow, Hsin-Vonn & Thomas, Lyn C., 2015. "Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research," European Journal of Operational Research, Elsevier, vol. 247(1), pages 124-136.
    3. Elena Ivona DUMITRESCU & Sullivan HUE & Christophe HURLIN & Sessi TOKPAVI, 2020. "Machine Learning or Econometrics for Credit Scoring: Let’s Get the Best of Both Worlds," LEO Working Papers / DR LEO 2839, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    4. Pérez-Martín, A. & Pérez-Torregrosa, A. & Vaca, M., 2018. "Big Data techniques to measure credit banking risk in home equity loans," Journal of Business Research, Elsevier, vol. 89(C), pages 448-454.
    5. José Willer Prado & Valderí Castro Alcântara & Francisval Melo Carvalho & Kelly Carvalho Vieira & Luiz Kennedy Cruz Machado & Dany Flávio Tonelli, 2016. "Multivariate analysis of credit risk and bankruptcy research data: a bibliometric study involving different knowledge fields (1968–2014)," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(3), pages 1007-1029, March.
    6. Dangxing Chen & Weicheng Ye & Jiahui Ye, 2022. "Interpretable Selective Learning in Credit Risk," Papers 2209.10127, arXiv.org.
    7. Adnan Dželihodžić & Dženana Đonko & Jasmin Kevrić, 2018. "Improved Credit Scoring Model Based on Bagging Neural Network," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(06), pages 1725-1741, November.
    8. Crone, Sven F. & Finlay, Steven, 2012. "Instance sampling in credit scoring: An empirical study of sample size and balancing," International Journal of Forecasting, Elsevier, vol. 28(1), pages 224-238.
    9. Nadia Ayed & Khemaies Bougatef, 2024. "Performance Assessment of Logistic Regression (LR), Artificial Neural Network (ANN), Fuzzy Inference System (FIS) and Adaptive Neuro-Fuzzy System (ANFIS) in Predicting Default Probability: The Case of," Computational Economics, Springer;Society for Computational Economics, vol. 64(3), pages 1803-1835, September.
    10. Doruk Şen & Cem Çağrı Dönmez & Umman Mahir Yıldırım, 2020. "A Hybrid Bi-level Metaheuristic for Credit Scoring," Information Systems Frontiers, Springer, vol. 22(5), pages 1009-1019, October.
    11. Juan Laborda & Seyong Ryoo, 2021. "Feature Selection in a Credit Scoring Model," Mathematics, MDPI, vol. 9(7), pages 1-22, March.
    12. Dimitris Andriosopoulos & Michalis Doumpos & Panos M. Pardalos & Constantin Zopounidis, 2019. "Computational approaches and data analytics in financial services: A literature review," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(10), pages 1581-1599, October.
    13. Rais Ahmad Itoo & A. Selvarasu & José António Filipe, 2015. "Loan Products and Credit Scoring by Commercial Banks (India)," International Journal of Finance, Insurance and Risk Management, International Journal of Finance, Insurance and Risk Management, vol. 5(1), pages 851-851.
    14. Jiang, Cuiqing & Wang, Zhao & Zhao, Huimin, 2019. "A prediction-driven mixture cure model and its application in credit scoring," European Journal of Operational Research, Elsevier, vol. 277(1), pages 20-31.
    15. Crook, Jonathan N. & Edelman, David B. & Thomas, Lyn C., 2007. "Recent developments in consumer credit risk assessment," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1447-1465, December.
    16. Linhui Wang & Jianping Zhu & Chenlu Zheng & Zhiyuan Zhang, 2024. "Incorporating Digital Footprints into Credit-Scoring Models through Model Averaging," Mathematics, MDPI, vol. 12(18), pages 1-15, September.
    17. Huei-Wen Teng & Michael Lee, 2019. "Estimation Procedures of Using Five Alternative Machine Learning Methods for Predicting Credit Card Default," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 1-27, September.
    18. Chen, Dangxing & Ye, Jiahui & Ye, Weicheng, 2023. "Interpretable selective learning in credit risk," Research in International Business and Finance, Elsevier, vol. 65(C).
    19. Kaposty, Florian & Kriebel, Johannes & Löderbusch, Matthias, 2020. "Predicting loss given default in leasing: A closer look at models and variable selection," International Journal of Forecasting, Elsevier, vol. 36(2), pages 248-266.
    20. Bravo, Cristián & Maldonado, Sebastián & Weber, Richard, 2013. "Granting and managing loans for micro-entrepreneurs: New developments and practical experiences," European Journal of Operational Research, Elsevier, vol. 227(2), pages 358-366.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:11:p:1971-:d:440863. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.