Author
Listed:
- Bansak, Kirk
- Paulson, Elisabeth
Abstract
This study explores public preferences between algorithmic and human decision-makers (DMs) in high-stakes contexts, how these preferences are impacted by performance metrics, and whether the public's evaluation of performance differs when considering algorithmic versus human DMs. Leveraging a conjoint experimental design, respondents (n ≈ 9,000) chose between pairs of DM profiles in two scenarios: pre-trial release decisions and bank loan decisions. DM profiles varied on the DM’s type (human vs. algorithm) and on three metrics—defendant crime rate/loan default rate, false positive rate (FPR) among white defendants/applicants, and FPR among minority defendants/applicants—as well as an implicit fairness metric defined by the absolute difference between the two FPRs. Controlling for performance, we observe a general tendency to favor human DMs, though this is driven by a subset of respondents who expect human DMs to perform better in the real world, and there is an analogous group with the opposite preference for algorithmic DMs. We also find that the relative importance of the four performance metrics remains consistent across DM type, suggesting that the public's preferences related to DM performance do not vary fundamentally between algorithmic and human DMs. Taken together, the results collectively suggest that people have very different beliefs about what type of DM (human or algorithmic) will deliver better performance and should be preferred, but they have similar desires in terms of what they want that performance to be regardless of DM type.
Suggested Citation
Bansak, Kirk & Paulson, Elisabeth, 2023.
"Public Attitudes on Performance for Algorithmic and Human Decision-Makers,"
OSF Preprints
pghmx_v1, Center for Open Science.
Handle:
RePEc:osf:osfxxx:pghmx_v1
DOI: 10.31219/osf.io/pghmx_v1
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:pghmx_v1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.